Gamma-Teleskope messen Durchmesser ferner Sterne

  • <b>Ein Forscherteam hat spezialisierte Gammastrahlen-Teleskope dank einer wiederbelebten Technik zu einem großen virtuellen Teleskop zusammengeschaltet und damit die Durchmesser hunderte Lichtjahre entfernter Sterne gemessen. Die Wissenschaftlerinnen und Wissenschaftler verwendeten die vier Teleskope des VERITAS-Observatoriums (Very Energetic Radiation Imaging Telescope Array System) in den USA, um mit der Methode der stellaren Intensitätsinterferometrie (SII) die Ausdehnung des 500 Lichtjahre entfernten blauen Riesen Beta Canis Majoris und des 2000 Lichtjahre entfernten Überriesen Epsilon Orionis zu bestimmen. Die vor knapp 50 Jahren entwickelte Methode der stellaren Intensitätsinterferometrie könnte eine vielversprechende Zweitnutzung von Gammastrahlen-Observatorien wie dem künftigen Cherenkov Telescope Array (CTA) erlauben.</b>


    „Ein gutes Verständnis der Sternenphysik ist wichtig für eine ganze Reihe astronomischer Fachgebiete, von der Suche nach Exoplaneten bis hin zur Kosmologie“, erläutert Nolan Matthews von der University of Utah, einer der Autoren der Studie. „Allerdings werden Sterne wegen ihrer großen Entfernung von der Erde oft als Punktlichtquellen gesehen.“ Die Interferometrie habe sich als sehr erfolgreiche Technik erwiesen, wenn es darum gehe, eine ausreichende Winkelauflösung zur Untersuchung von Sternen zu erreichen. „Wir haben gezeigt, dass optische Intensitätsinterferometrie-Messungen mit einer Matrix aus vielen Teleskopen möglich sind, die wiederum unserem Verständnis von Sternsystemen helfen werden“, sagt Matthews.


    Normalerweise spähen die VERITAS-Teleskope nach den schwachen blauen Blitzen des Cherenkov-Lichts, das entsteht, wenn kosmische Gammastrahlen auf die Erdatmosphäre treffen. Diese Beobachtungen sind jedoch auf dunkle mondlose Stunden beschränkt. Das Team nutzte für seine Studie im Dezember 2019 eine Zeit, als VERITAS seine normalen Beobachtungen nicht durchführen konnte. „Dank moderner Elektronik konnten wir die Lichtsignale der einzelnen Teleskope per Computer kombinieren. Das resultierende Instrument hat die optische Auflösung eines Reflektors von der Größe eines Fußballfelds“, erklärt Forschungsleiter David Kieda von der University of Utah. „Dies ist die erste Anwendung der ursprünglichen Hanbury-Brown-Twiss-Methode bei einer Matrix optischer Teleskope.“



    Durch das Hinzufügen weiterer Teleskope in größerem Abstand voneinander lässt sich die räumliche Auflösung der stellaren Intensitätsinterferometrie (SII) so weit erhöhen, dass sich Details auf Sternoberflächen abbilden lassen könnten (künstlerische Darstellung). Illustration: CfA, M. Weiss


    Das Team beobachtete beide Sterne mehrere Stunden lang. Die Messungen ergaben Winkeldurchmesser von 0,523 Millibogensekunden für Beta Canis Majoris und 0,631 Millibogensekunden für Epsilon Orionis. Eine Millibogensekunde entspricht in etwa der Ausdehnung einer Zwei-Cent-Münze auf dem Eiffelturm in Paris von New York aus betrachtet. „Die Messwerte für beide Sterne stimmen gut mit früheren Messungen überein, die mit derselben Technik mit den Narrabri-Teleskopen in den 1970er Jahren durchgeführt wurden“, berichtet DESY-Forscher Tarek Hassan, der an der Auswertung der VERITAS-Messungen beteiligt war. Die von 1963 bis 1974 betriebenen Narrabri-Teleskope waren die ersten Instrumente, die Sterndurchmesser mit Hilfe der stellaren Intensitätsinterferometrie bestimmt haben. Das VERITAS-Team konnte jetzt erhebliche Verbesserungen der Empfindlichkeit der Technik zeigen und auch ihre Skalierbarkeit dank digitaler Elektronik.


    Mit der Methode lassen sich auch Dutzende von Teleskopen kombinieren, betonen die Forscher. Das könnte sich als eine interessante Option für nicht nutzbare Beobachtungszeit am künftigen Cherenkov-Teleskop-Array erweisen. Es wird das größte Gammastrahlen-Observatorium der Welt sein. Das CTA wird Gammateleskope in drei Größenklassen umfassen, DESY ist für die mittelgroßen Teleskope verantwortlich. „Das CTA wird bis zu 99 Teleskope mit Kilometer-Basislinien auf der Südhalbkugel und 19 Teleskope mit mehreren hundert Metern Basislinien auf der Nordhalbkugel besitzen“, erläutert Hassan. „Stellare Intensitätsinterferometrie-Messungen mit dem CTA könnte uns künftig erlauben, Sterne mit beispielloser Winkelauflösung zu untersuchen.“


    Die Intensitätsinterferometrie könnte es den Wissenschaftlern dabei nicht nur ermöglichen, die Durchmesser von Sternen zu bestimmen, sondern auch Sternenoberflächen abzubilden und die Eigenschaften von Systemen wie wechselwirkenden Doppelsternen, schnell rotierenden Sternen oder pulsierender sogenannter Cepheiden-Variablen zu messen. In einer früheren Studie hatten Forscherinnen und Forscher in einem innovativen Verfahren mit Gammateleskopen bereits die Größe von Sternen bestimmt, indem sie Asteroidenbedeckungen dieser Sterne beobachteten. Diese Untersuchungen zeigen, dass Gammateleskope und die Forschung mit ihnen vielseitiger sind als angenommen.


    VERITAS ist ein System aus vier optischen Zwölf-Meter-Reflektoren für die Gammastrahlenastronomie am Fred-Lawrence-Whipple-Observatorium des CfA in Amado, Arizona. VERITAS wird durch das U.S. Department of Energy Office of Science, die U.S. National Science Foundation und die Smithsonian Institution, NSERC aus Kanada, sowie die Helmholtz-Gemeinschaft unterstützt. An VERITAS arbeiten etwa 80 Wissenschaftlerinnen und Wissenschaftler von 20 Institutionen in den Vereinigten Staaten, Kanada, Deutschland und Irland.


    Weitere Infos auf den Seiten des DESY unter https://www.desy.de/aktuelles/…Anchor=1869&two_columns=0

  • Hallo Caro,


    vielen Dank für den interessanten Bericht, die ersten Ergebnisse und die künstlerische Darstellung sind schon spektakulär.


    Intensitätsinterferometrie ist in Astrokreisen vermutlich wenig bekannt und je nachdem aus welcher Perspektive man schaut auch rätselhaft. Die Pionierarbeit von Arbeit von Hanbury Brown und Twiss hat in der Optikgemeinde eine viele Jahre dauernde heftige Kontroverse ausgelöst, es gab die Meinung, dass könne gar nicht funktionieren. Schaut man aus der Perspektive eines Radioastronomen, wie Hanbury Brown kann man sich an Hand einer kleinen Skizze sofort überzeugen, dass das Signal an zwei verschiedenen Detektoren, in diesem Fall Antennen zeitlich korreliert ist und man durch Variation des Abstandes der Antennen den Durchmesser von Radioquellen bestimmen kann. Dass dies aber auch mit sichtbaren Licht oder hier sogar mit Gammastrahlung funktioniert ist sehr überraschend, Roy Glauber ist für die Erklärung mit Hilfe der Quantentheorie der Kohärenz der Physik-Nobelpreis verliehen worden. Die Photonen sind als Bosonen gebuncht und daher lassen sich auch ohne dass man eine Phase wie bei konventioneller Interferometrie bestimmt über Intensitätkorrelationen geometrische Informationen gewinnen. Wenn ich mich nicht verrechnet habe, sollte das theoretische Auflösungsvermögen von dem VERITAS Teleskop Array bei etwa 10-^14 Bogensekunden liegen, damit könnte man Details vom Corona-Virus auf dem Mars auflösen, oder klingt vielleicht weniger spektakulär den Eiffelturm in M31 erkennen (Das würde nur gelten wenn Gammastrahlen verwendet würden, siehe p.s.). Diese extreme Zahl ergibt sich aus dem Verhältnis der Wellenlänge der Gammastrahlung und dem Durchmesser des Teleskop Arrays.


    Ich bin gespannt, was wir aus der Ecke von VERITAS für weitere Bilder sehen werden.


    Beste Grüße


    Thomas


    p.s. inzwischen habe ich die Original Puplikation (https://arxiv.org/pdf/2007.10295.pdf) auf arxiv gefunden, und gelernt, dass die Messungen zwar mit Gamma Ray Teleskopen gemacht wurden aber im optischen Spektralbereich mit violettem Licht, die erzielbare Auflösung ist daher um viele Größenordnungen kleiner, doch immer noch eindrucksvoll.


    p.p.s für alle die hier mitlesen, was das Besondere an der Intensitätsinterferometrie ist, es werden keine Spiegel mit hoher optischer Qualität genötigt, die Cherenkov-Teleskope besitzen im Vergleich zum VLT eher Rasierspiegelqualität

  • Hallo Caro,


    ich finde das wie schon geschrieben sehr interessant.


    Bisher bin ich bei dem Bild davon ausgegangen, dass das linke eine Messung ist, und rechts ein künstlerische Darstellung was in Zukunft mit einem viele größeren Teleskop-Array wie CfA möglich sein könnte. Doch jetzt kommen mir Zweifel denn das linke Bild ist in der Original-Publikation gar nicht enthalten. Kannst du da was zu sagen?


    beste Grüße


    Thomas


    p.s. Ich finde die Überschrift des Artikels etwas unglücklilch gewählt, und bin promt, weil ich nicht genug gelesen habe darauf reingefallen, sicher mein Fehler. Doch ein bisschen ist der Titel so wie " Erdbeschleunigung mit dem Barometer bestimmt" und dann wurde die Höhe des Hauses von dem man das Baromether hat fallen lassen und die Zeit bis zu Aufschlag gemessen statt die Änderunng des Luftruckes als Funktion der Höhe.[;)]

Jetzt mitmachen!

Sie haben noch kein Benutzerkonto auf unserer Seite? Registrieren Sie sich kostenlos und nehmen Sie an unserer Community teil!