Posts by Caro

    Astronom*innen haben einen jahrzehntelangen Konflikt beendet. Bislang führten Rekonstruktionen des inneren Aufbaus der Sonne aus der Analyse von Sonnenschwingungen (Helioseismologie) nicht zu der Struktur, die sich aus der grundlegenden Theorie der Sternentwicklung ergibt, die wiederum auf Messungen der chemischen Zusammensetzung der heutigen Sonne beruht. Neue Rechnungen zur Physik der Sonnenatmosphäre korrigieren die Häufigkeitswerte für mehrere chemische Elemente. Insbesondere enthält die Sonne mehr Sauerstoff, Silizium und Neon als bisher angenommen. Damit verschwindet die Struktur-Diskrepanz. Die verwendeten Methoden versprechen auch ganz allgemein genauere Schätzungen der chemischen Zusammensetzung von Sternen.


    Was tun, wenn eine bewährte Methode zur Bestimmung der chemischen Zusammensetzung der Sonne im Widerspruch zu einer innovativen, präzisen Technik zur Kartierung des Aufbaus der Sonne zu stehen scheint? Das war die Situation, mit der Astronomen bei der Erfoschung der Sonne in den letzten Jahren konfrontiert waren – bis neue Berechnungen, die Ekaterina Magg, Maria Bergemann und ihre Kolleg*innen jetzt veröffentlicht haben, den scheinbaren Widerspruch auflösten.


    Die bewährte Methode, um die es geht, ist die Spektralanalyse. Um die chemische Zusammensetzung unserer Sonne oder anderer Sterne zu bestimmen, greifen Astronom*innen routinemäßig auf Spektren zurück: auf regenbogenartige Zerlegungen des Lichts in seine verschiedenen Wellenlängen. Sternspektren enthalten auffällige, scharfe dunkle Linien, die erstmals 1802 von William Wollaston entdeckt, 1814 von Joseph von Fraunhofer wiederentdeckt und in den 1860er Jahren von Gustav Kirchhoff und Robert Bunsen als Anzeichen für das Vorhandensein bestimmter chemischer Elemente erkannt wurden.


    Die bahnbrechende Arbeit des indischen Astrophysikers Meghnad Saha im Jahr 1920 zeigte den quantitativen Zusammenhang zwischen der Stärke dieser "Absorptionslinien" und der Sterntemperatur sowie der chemischen Zusammensetzung auf. Das lieferte die Grundlage für unsere physikalischen Modelle von Sternen. Cecilia Payne-Gaposchkins Erkenntnis, dass Sterne wie unsere Sonne hauptsächlich aus Wasserstoff und Helium und nur in Spuren aus schwereren chemischen Elementen bestehen, basiert auf dieser Arbeit.


    Die zugrundeliegenden Rechnungen, die spektrale Eigenschaften einerseits, chemische Zusammensetzung und Physik des stellaren Plasmas andererseits in Beziehung setzen, sind für die Astrophysik seit Sahas Zeiten von entscheidender Bedeutung. Sie bildeten die Grundlage für jahrhundertelangen Fortschritt beim Verständnis der chemischen Entwicklung des Universums ebenso wie für die Rekonstruktionen der physikalischen Struktur und zeitlichen Entwicklung von Sternen und Exoplaneten. Es war daher ein ziemlicher Schock, als neue Beobachtungsdaten verfügbar wurden, Einblicke in das Innenleben unserer Sonne ermöglichten – aber die Ergebnisse mit dem, was man auf Basis der Spektren rekonstruiert hatte, partout nicht zusammenpassten.


    Das moderne Standardmodell der Sonnenentwicklung wird anhand einer (in der Sonnenphysik) berühmten Messreihe zur chemischen Zusammensetzung der Sonnenatmosphäre kalibriert, die 2009 veröffentlicht wurde. Bei den neuartigen Daten handelt es sich um sogenannte helioseismische Daten, also Messungen, die sehr genau die winzigen Schwingungen der Sonne als Ganzes erfassen – die Art und Weise, wie sich die Sonnenoberfläche in charakteristischen Mustern rhythmisch ausdehnt und zusammenzieht, auf Zeitskalen zwischen Sekunden und Stunden. So wie seismische Wellen den Geologen wichtige Informationen über das Erdinnere liefern, oder der Klang einer Glocke Informationen über ihre Form und Materialeigenschaften, liefert die Helioseismologie Informationen über das Innere der Sonne.


    Aus hochpräzisen helioseismischen Messungen konnte man Rückschlüsse auf die innere Struktur der Sonne ziehen, die im Widerspruch zu den auf der Sonnenchemie basierenden Standardmodellen vom Aufbau unseres Sterns standen. Konkret war der Helioseismologie zufolge der so genannte konvektive Bereich im Inneren unserer Sonne, in dem Materie aufsteigt und wieder absinkt wie Wasser in einem Kochtopf, wesentlich größer, als es das Standardmodell vorhersagte. Auch die Geschwindigkeit der Schallwellen in den unteren Regionen der Konvektionszone wich von den Vorhersagen des Standardmodells ab, ebenso wie die Gesamtmenge an Helium in der Sonne. Zu allem Überfluss passten außerdem bestimmte Messungen von Sonnenneutrinos – flüchtige, schwer nachweisbare Elementarteilchen, die uns direkt aus den Kernregionen der Sonne erreichen – nicht recht zum Standardmodell.


    Die Astronomen sprachen bald von einer "solar abundance crisis", sinngemäß einer Sonnenchemie-Krise. Die Lösungsvorschläge waren ungewöhnlich bis exotisch: Hatte die Sonne während ihrer Planetenentstehungsphase vielleicht metallarmes Gas angehäuft? Wird die Energie im Sonneninneren von den eigentlich ja nicht wechselwirkenden Teilchen der dunklen Materie transportiert?


    Die jetzt veröffentlichte Studie von Ekaterina Magg, Maria Bergemann und Kollegen präsentiert eine Lösung, die ganz ohne exotische Physik auskommt. Sie bietet stattdessen eine grundlegende Überarbeitung der Modelle, auf deren Basis vom Sonnenspektrum auf die chemischen Zusammensetzung geschlossen wird. Frühe Studien dieser Art stützten sich auf die Annahme eines sogenannten lokalen thermischen Gleichgewichts: Sie gingen davon aus, dass die Energie in jedem Bereich der Atmosphäre eines Sterns in jeder der Entwicklungsphasen Zeit hat, sich zu verteilen und eine Art Gleichgewicht zu erreichen. Damit kann man jeder solchen Region eine Temperatur zuordnen. Das führt zu einer erheblichen Vereinfachung der Berechnungen.


    Doch bereits in den 1950er Jahren hatten einige Astronomen erkannt, dass dieses Bild zu stark vereinfacht war. Seitdem werden in immer mehr Studien so genannte Nicht-LTE-Berechnungen durchgeführt, bei denen die Annahme eines lokalen Gleichgewichts (englisch local thermal equilibrium, LTe) entfällt. Die Nicht-LTE-Berechnungen bieten eine detaillierte Beschreibung des Energieaustauschs innerhalb des Systems – Atome werden durch Photonen (Lichtteilchen) angeregt oder stoßen zusammen, Photonen werden emittiert, absorbiert oder gestreut. In Sternatmosphären, in denen die Dichte viel zu gering ist, als dass das System ein thermisches Gleichgewicht erreichen könnte, zahlt sich diese Art von Detailgenauigkeit aus. Dort liefern Nicht-LTE-Berechnungen Ergebnisse, die sich deutlich von den Rechnungen unterscheiden, die ein lokales thermisches Gleichgewicht postulieren.


    Spektrum der Sonne, aufgenommen mit dem hochauflösenden Spektrographen NARVAL am Télescope Bernard Lyot des Observatoire Midi-Pyrénées. Spektren wie dieses, insbesondere die Eigenschaften der dunklen Absorptionslinien, die auf dem Bild deutlich zu sehen sind, ermöglichen es den Astronom*innen, Rückschlüsse auf die Temperatur und die chemische Zusammensetzung eines Stern zu ziehen. Bild: M. Bergemann / MPIA / NARVAL@TBL


    Die Gruppe von Maria Bergemann am Max-Planck-Institut für Astronomie ist weltweit führend bei der Anwendung von Nicht-LTE-Berechnungen auf Sternatmosphären. Im Rahmen ihrer Doktorarbeit in dieser Gruppe machte sich Ekaterina Magg daran, die Wechselwirkung der Strahlung mit der Materie in der Sonnenphotosphäre genauer zu berechnen – die Photosphäre ist diejenige äußere Schicht der Sonnenatmosphäre, aus der das meiste nach außen abgestrahlte Licht der Sonne stammt und in der auch die Absorptionslinien im Sonnenspektrum eingeprägt sind.


    In der betreffenden Studie betrachteten die Wissenschaftler*innen alle chemischen Elemente, die für die aktuellen Modelle der Sternevolution relevant sind. Um sicherzustellen, dass sie dabei konsistente Ergebnisse erhielten, wendeten die Forscher*innen gleich mehrere unabhängige Methoden zur Beschreibung der Wechselwirkungen zwischen den Atomen und dem Strahlungsfeld der Sonne an. Für die Beschreibung der konvektiven Regionen unserer Sonne verwendeten sie bestehende Simulationen, die sowohl die Bewegung des Plasmas als auch die Strahlungsphysik berücksichtigen ("STAGGER" und "CO5BOLD"). Für den Vergleich mit Spektraldaten wählten sie den Datensatz mit der höchsten verfügbaren Qualität: das vom Institut für Astrophysik und Geophysik der Universität Göttingen veröffentlichte Sonnenspektrum. "Wir haben uns dabei intensiv mit der Analyse von statistischen und systematischen Effekten beschäftigt, die die Genauigkeit unserer Ergebnisse einschränken", erklärt Magg.


    Die neuen Berechnungen ergaben eine für einige Elemente deutlich andere Beziehung zwischen der Elementhäufigkeit und der Stärke der entsprechenden Spektrallinien als in früheren Arbeiten. Entsprechend kommen im Vergleich zu früheren Analysen deutlich andere chemische Häufigkeiten heraus, wenn man das beobachtete Sonnenspektrum analysiert. Magg sagt: "Wir haben festgestellt, dass der Anteil an schwereren Elementen als Helium in der Sonne 26% höher liegt, als in früheren Studien behauptet". Diese schwereren Elemente nennen Astronom*innen Metalle. Insgesamt machen Metalle nur einige tausendstel Prozent aller Atomkerne in der Sonne aus; die beste Schätzung für diesen Wert liegt jetzt um 26% höher als in früheren Studien. Magg fügt hinzu: "Der Wert für die Sauerstoffhäufigkeit war fast 15% höher als in früheren Studien." Die neuen Werte stimmen gut mit der chemischen Zusammensetzung von primitiven Meteoriten ("CI-Chondriten") überein, von denen man annimmt, dass sie der chemischen Zusammensetzung des frühen Sonnensystems entsprechen.


    Setzt man die neuen Werte als Input in die Modelle des Aufbaus und der Entwicklung der Sonne ein, dann verschwindet die rätselhafte Diskrepanz zwischen den Ergebnissen jener Modelle und den helioseismischen Messungen. Die gründliche Analyse der Entstehung der Spektrallinien durch Magg, Bergemann und ihre Kollegen, die sich auf wesentlich vollständigere Modelle der zugrunde liegenden Physik stützt als vorangehende Arbeiten, zeigt, wie sich die Krise überwinden lässt. Maria Bergemann sagt: "Die neuen Sonnenmodelle, die auf den von uns bestimmten neuen Werten für die chemische Zusammensetzung beruhen, sind realistischer als je zuvor: Sie ergeben ein Modell der Sonne, das mit allen Informationen, die wir über die heutige Struktur der Sonne haben – Schallwellen, Neutrinos, Leuchtkraft und Sonnenradius – übereinstimmt, ohne dass man exotische Physik im Sonneninneren heranziehen muss."


    Ein zusätzlicher Vorteil ist, dass sich die neuen Modelle leicht auf andere Sterne als die Sonne anwenden lassen. In einer Zeit, in der groß angelegte Durchmusterungen wie SDSS-V und 4MOST qualitativ hochwertige Spektren für eine immer größere Anzahl von Sternen liefern, ist diese Art von Fortschritt in der Tat wertvoll – und stellt künftige Analysen der Sternchemie mit ihren umfassenderen Auswirkungen auf Rekonstruktionen der chemischen Entwicklung unseres Kosmos auf eine solidere Grundlage als je zuvor.


    Weitere Infos auf den Seiten des MPIA unter http://www.mpia.de/5857854/new…tion_18647607_transferred

    Mithilfe von Zehntausenden von Sternen, die von der Raumsonde Gaia beobachtet wurden, haben Sara Rezaei Khoshbakht und Jouni Kainulainen die 3D-Gestalt zweier großer sternbildender Molekülwolken, der Kalifornien-Wolke und der Orion-A-Wolke, ermittelt. Auf herkömmlichen 2D-Bildern erscheinen sie ähnlich strukturiert und enthalten Filamente aus Staub und Gas mit scheinbar vergleichbaren Dichten. In 3D sehen sie jedoch ganz anders aus. Tatsächlich sind ihre Dichten sehr viel unterschiedlicher, als ihre auf die Himmelsebene projizierten Bilder vermuten lassen. Dieses Ergebnis löst das seit langem bestehende Rätsel, warum diese beiden Wolken Sterne mit unterschiedlicher Intensität bilden.


    Kosmische Gas- und Staubwolken sind die Geburtsstätten von Sternen. Genauer gesagt bilden sich Sterne in den dichtesten Taschen solchen Materials. Die Temperaturen sinken bis nahe an den absoluten Nullpunkt, und das dicht gepackte Gas kollabiert unter seinem eigenen Gewicht und bildet schließlich einen Stern. „Die Dichte, also die Menge an Materie, die in einem bestimmten Volumen komprimiert ist, ist eine der entscheidenden Eigenschaften, die die Effizienz der Sternentstehung bestimmt“, sagt Sara Rezaei Khoshbakht. Sie ist Astronomin am Max-Planck-Institut für Astronomie in Heidelberg und die Hauptautorin eines neuen Artikels.


    In einer Pilotstudie, die in diesem Artikel beschrieben wird, haben Sara Rezaei Khoshbakht und ihr Mitautor Jouni Kainulainen eine Methode angewandt, mit der sie die 3D-Morphologie von Molekülwolken in zwei riesigen Sternentstehungswolken rekonstruieren konnten. Kainulainen ist Wissenschaftler an der Technischen Hochschule Chalmers in Göteborg, Schweden. Früher war er auch am MPIA tätig. Ihre Ziele waren die Orion-A-Wolke und die Kalifornien-Wolke.


    Normalerweise ist es schwierig, die Dichte in Wolken zu messen. „Alles, was wir sehen, wenn wir Objekte im Weltraum beobachten, ist ihre zweidimensionale Projektion auf einer vermeintlichen Himmelsphäre“, erklärt Jouni Kainulainen. Er ist Experte für die Interpretation des Einflusses kosmischer Materie auf das Sternenlicht und die Berechnung von Dichten aus solchen Daten. Kainulainen fügt hinzu: „Herkömmlichen Beobachtungen fehlt es an der nötigen Tiefe. Daher ist die einzige Dichte, die wir normalerweise aus solchen Daten ableiten können, die so genannte Säulendichte.“



    Die Gestalt der Kalifornien- und der Orion-A-Wolke aus zwei verschiedenen Perspektiven bei einer räumlichen Auflösung von 15 Lichtjahren. Die Farben zeigen die Dichte an, wobei rote Farben für höhere Werte stehen. Die Bilder basieren auf der 3D-Rekonstruktion von Sara Rezaei Khoshbakht und Jouni Kainulainen. Bild: Rezaei Khoshbakht & Kainulainen (2022) / MPIA


    Die Säulendichte ist die entlang einer Sichtlinie aufsummierten Materieteilchen geteilt durch den projizierten Querschnitt. Daher spiegeln diese Säulendichten nicht unbedingt die tatsächlichen Dichten von Molekülwolken wider, was problematisch ist, wenn man Wolkeneigenschaften mit der Sternentstehungsaktivität in Verbindung setzt. Die Bilder der beiden in dieser Arbeit untersuchten Wolken, die die thermische Staubemission zeigen, weisen ähnliche Strukturen und Dichten auf. Ihre sehr unterschiedlichen Sternentstehungsraten geben Astronomen und Astronominnen jedoch seit vielen Jahren Rätsel auf.


    Die neue 3D-Rekonstruktion zeigt nun, dass sich diese beiden Wolken gar nicht so ähnlich sind. Trotz des filamentartigen Aussehens auf den 2D-Bildern ist die Kalifornien-Wolke eine flache, fast 500 Lichtjahre lange Materialschicht mit einer großen Blase, die sich darunter erstreckt. Daher kann man der Kalifornien-Wolke nicht nur eine einzige Entfernung zuordnen, was erhebliche Auswirkungen auf die Interpretation ihrer Eigenschaften hat. Aus unserer Perspektive von der Erde aus gesehen ist die Kalifornien-Wolke fast exakt zur Kante hin ausgerichtet, was eine filamentartige Struktur nur vortäuscht. Infolgedessen ist die tatsächliche Dichte der Wolke viel geringer, als die Säulendichte vermuten lässt, was die Diskrepanz zwischen den früheren Dichteschätzungen und der Sternentstehungsrate der Wolke erklärt.


    Und wie sieht die Orion-A-Wolke in 3D aus? Das Team bestätigte die dichte filamentartige Struktur, die auf den 2D-Bildern zu sehen war. Die tatsächliche Morphologie der Wolke unterscheidet sich jedoch auch von dem, was wir in 2D sehen. Orion A ist ziemlich komplex, mit zusätzlichen Verdichtungen entlang des markanten Gas- und Staubgrats. Im Durchschnitt ist Orion A viel dichter als die Kalifornien-Wolke, was ihre ausgeprägtere Sternentstehungsaktivität erklärt.


    Sara Rezaei Khoshbakht, die ebenfalls in Chalmers tätig ist, entwickelte die 3D-Rekonstruktionsmethode während ihrer Doktorarbeit am MPIA. Dabei wird die Veränderung des Sternenlichts beim Durchqueren dieser Gas- und Staubwolken analysiert, das von der Raumsonde Gaia und anderen Teleskopen gemessen wurde. Gaia ist ein Projekt der Europäischen Weltraumorganisation (ESA), dessen Hauptzweck darin besteht, die Entfernungen zu über einer Milliarde Sternen in der Milchstraße genau zu vermessen. Diese Entfernungen sind entscheidend für die 3D-Rekonstruktionsmethode


    „Wir haben das Licht von 160.000 bzw. 60.000 Sternen für die Kalifornien-Wolke und die Orion A-Wolke analysiert und miteinander kombiniert“, sagt Sara Rezaei Khoshbakht. Die beiden Forschenden rekonstruierten die Wolkenstrukturen und -dichten mit einer Auflösung von nur 15 Lichtjahren. „Dies ist nicht der einzige Ansatz, den Astronomen und Astronominnen verwenden, um räumliche Wolkenstrukturen zu bestimmen“, fügt Rezaei Khosbakht hinzu. „Aber unsere Methode liefert robuste und zuverlässige Ergebnisse ohne numerische Artefakte.“


    Diese Studie beweist, dass sie das Potenzial hat, die Erforschung der Sternentstehung in der Milchstraße zu verbessern, indem sie eine dritte Dimension hinzufügt. „Ich denke, ein wichtiges Ergebnis dieser Arbeit ist, dass sie Studien in Frage stellt, die sich ausschließlich auf Werte für die Säulendichte verlassen, um Eigenschaften der Sternentstehung abzuleiten und sie miteinander zu vergleichen“, schließt Sara Rezaei Khoshbakht.

    Diese Arbeit ist jedoch nur der erste Schritt zu dem, was die beiden Astronomen erreichen wollen. Sara Rezaei Khoshbakht verfolgt ein Projekt, das letztendlich die räumliche Verteilung des Staubs in der gesamten Milchstraße ermitteln und ihre Verbindung zur Sternentstehung aufklären soll.


    Weitere Infos auf den Seiten des MPIA unter https://www.mpia.de/aktuelles/wissenschaft/2022-08-3d-clouds

    Aufgrund der blubbernden Oberfläche massereicher Riesensterne scheinen ihre Positionen am Himmel zu wackeln. Ein internationales Team, unter Leitung von Astrophysikern des Exzellenzclusters ORIGINS, hat nun die Gasbewegungen in den atmosphärischen Schichten dieser Sterne detailliert simuliert und ihre Ergebnisse mit hochwertigen Daten des Perseus-Sternhaufens verglichen. Sie stellen fest, dass die Oberflächenstrukturen tatsächlich einen großen Teil der Messunsicherheit in den Beobachtungen erklären könnten.

    Zumindest ein blubbernder Stern ist uns sehr gut bekannt: Bereits im 19. Jahrhundert beobachteten Astronomen kleine Muster auf der Oberfläche der Sonne (sogenannte „konvektive Zellen“), die sich wie kochendes Wasser in einem Topf verhalten. In den äußeren Schichten der Sonne erhitzt sich das Gas und steigt zur Oberfläche auf, wo es sich abkühlt und wieder absinkt. Ein ähnlicher Prozess findet auch in massereichen Sternen statt, zum Beispiel in roten Überriesen, die sich bereits in einer späteren Phase der Sternentwicklung befinden. Diese Sterne sind mindestens achtmal so massereich wie die Sonne, viel kühler (etwa 3500 Kelvin) und riesig (sie haben mindestens den 700-fachen Durchmesser der Sonne). Wäre unsere Sonne ein roter Überriese, würde ihre Oberfläche die Umlaufbahn des Mars einschließen.


    Rote Überriesen haben sich so stark ausgedehnt, dass ihre Oberflächengravitation extrem niedrig ist: Sie kann mehr als 70.000 Mal kleiner sein als die der Sonne (d.h. ähnlich wie auf dem Mond). Aufgrund dieser geringen Schwerkraft sind die konvektiven Zellen extrem ausgedehnt und können bis zu 30% des Sternradius einnehmen. Außerdem befördert die Konvektion Gas aus dem Sterninneren an dessen Oberfläche, was den Ausstoß von Materie in die zirkumstellare Umgebung begünstigt. Ein roter Überriese kann eine kolossale Gasmenge freisetzen, milliardenfach größer als bei der Sonne. Sie sind die hellsten Sterne im Universum im infraroten Spektralbereich und die Untersuchung ihrer physikalischen Eigenschaften ist sehr wichtig, um die späten Phasen der Entwicklung massereicher Sterne besser zu verstehen.


    Eine große Unsicherheit bei der Beobachtung roter Überriesen besteht jedoch darin, dass die Position des Photozentrums – d.h. des Zentrums ihrer Lichtemission – nicht mit dem Baryzentrum des Sterns übereinstimmt und sich zudem aufgrund der zeitlichen Änderung des Konvektionsmusters ständig verschiebt. Um diese Bewegungen zu quantifizieren, ist ein theoretischer Ansatz erforderlich, der auf dreidimensionalen, hydrodynamischen Simulationen der Gasbewegung in den atmosphärischen Schichten von Sternen in Verbindung mit Strahlung beruht. Diese Modelle simulieren die gesamte Hülle des Sterns im Laufe der Zeit.


    „Die synthetischen Karten zeigen extrem unregelmäßige Oberflächen, auf denen sich die größten Strukturen auf Zeitskalen von Monaten oder sogar Jahren entwickeln, während sich kleinere Strukturen im Laufe von mehreren Wochen ändern“, führt der Leiter der Studie Andrea Chiavassa vom Laboratoire Lagrange, dem Exzellenzcluster ORIGINS und dem Max-Planck-Institut für Astrophysik aus. „Das bedeutet, dass sich die Position des Sterns in Abhängigkeit von der Zeit verändern sollte.“


    Simulierte Intensitätsverteilung eines roten Überriesensterns. Bild: Chiavassa et al, A&A 661, L1 (2022)


    Das Team berechnete die Verschiebung des Photozentrums in den Simulationen und verglich sie mit der Messunsicherheit von Sternen in χ Perseus, einem nahegelegenen, jungen Sternhaufen, die in Phase 3 der Gaia-Mission beobachtet wurden. Gaia ist eine astrometrische, photometrische und spektroskopische Mission im All, die einen großen Teil der Milchstraße vermisst. Der Perseus-Sternhaufen ist gut erforscht und enthält eine relativ große Population roter Überriesen sowie andere Sterne. „Wir haben festgestellt, dass die Positionsunsicherheiten bei roten Überriesen viel größer sind als bei anderen Sternen. Dies bestätigt, dass sich ihre Oberflächenstrukturen mit der Zeit drastisch verändern, so wie es unsere Berechnungen vorhersagen“, erklärt ORIGINS PI Rolf Kudritzki, Mitautor der Studie, von der Universitätssternwarte München und dem Institute for Astronomy, Hawaii.


    Rote Überriesen tragen wesentlich zur chemischen Anreicherung von Galaxien bei. Um die Sternentwicklung im nahen und fernen Universum und ihre Auswirkungen auf die kosmische Umwelt zu verstehen, ist eine detaillierte Kenntnis der Windphysik während des Lebenszyklus dieser Sterne erforderlich. Dazu ist es erforderlich, die gesamte ausgestoßene Masse sowie deren Art, die Geschwindigkeit der Winde und die Gesamtgeometrie der zirkumstellaren Hülle zu ermitteln.


    „Das tanzende Muster roter Riesensterne am Himmel könnte uns mehr über ihre kochenden Hüllen verraten“, erklärt Selma de Mink, Mitautorin und Direktorin am Max-Planck-Institut für Astrophysik. „Mit unserem Ansatz und in Kombination mit den Gaia-Daten werden wir in der Lage sein, wichtige Informationen über die stellare Dynamik zu extrahieren und die physikalischen Prozesse besser zu verstehen, die die starke Konvektion in diesen Sternen verursachen.“


    Weitere Infos auf den Seiten des MPA unter https://www.mpa-garching.mpg.de/1055042/news20220530 und beim Excellence Cluster Origins unter https://www.origins-cluster.de…ensterne-tanzen-am-himmel

    Bild: EHT Collaboration



    Heute haben Astronom*innen bei gleichzeitigen Pressekonferenzen auf der ganzen Welt, darunter auch am Hauptsitz der Europäischen Südsternwarte (ESO) in Deutschland, das erste Bild des supermassereichen schwarzen Lochs im Zentrum unserer eigenen Milchstraßengalaxie präsentiert. Dieses Ergebnis liefert überwältigende Beweise dafür, dass es sich bei dem Objekt tatsächlich um ein schwarzes Loch handelt, und liefert wertvolle Hinweise auf die Funktionsweise solcher Giganten, von denen man annimmt, dass sie sich im Zentrum der meisten Galaxien befinden. Das Bild wurde von einem globalen Forschungsteam, der Event Horizon Telescope (EHT) Collaboration, unter Verwendung von Beobachtungen aus einem weltweiten Netzwerk von Radioteleskopen erstellt.


    Das Bild ist ein lang erwarteter Blick auf das massereiche Objekt, das sich im Zentrum unserer Galaxie befindet. Wissenschaftler*innen hatten zuvor Sterne gesehen, die um ein unsichtbares, kompaktes und sehr massereiches Objekt im Zentrum der Milchstraße kreisen. Dies deutete stark darauf hin, dass es sich bei diesem Objekt – bekannt als Sagittarius A* (Sgr A*) – um ein schwarzes Loch handelt, und die heutige Aufnahme liefert den ersten direkten visuellen Beweis dafür.


    Obwohl wir das schwarze Loch selbst nicht sehen können, weil es völlig dunkel ist, zeigt das umgebende glühende Gas eine verräterische Signatur: eine dunkle zentrale Region (Schatten genannt), die von einer hellen ringförmigen Struktur umgeben ist. Dieser neue Blick zeigt das Licht, das durch die starke Schwerkraft des schwarzen Lochs, das vier Millionen Mal massereicher als unsere Sonne ist, gebeugt wird.


    „Wir waren verblüfft, wie gut die Größe des Rings mit den Vorhersagen von Einsteins Allgemeiner Relativitätstheorie übereinstimmte“, sagte EHT-Projektwissenschaftler Geoffrey Bower vom Institut für Astronomie und Astrophysik der Academia Sinica in Taipeh. „Diese beispiellosen Beobachtungen haben unser Verständnis dessen, was im Zentrum unserer Galaxie geschieht, erheblich verbessert und bieten neue Erkenntnisse darüber, wie diese riesigen schwarzen Löcher mit ihrer Umgebung in Verbindung stehen.“


    Da das schwarze Loch etwa 27.000 Lichtjahre von der Erde entfernt ist, erscheint es uns am Himmel etwa so groß wie ein Krapfen auf dem Mond. Zur Abbildung des schwarzen Lochs schuf das Team das leistungsstarke EHT, das acht bestehende Radio-Observatorien auf der ganzen Welt zu einem einzigen virtuellen Teleskop in Erdgröße verband [1]. Das EHT beobachtete Sgr A* in mehreren Nächten im Jahr 2017 und sammelte viele Stunden am Stück Daten, ähnlich wie bei einer langen Belichtungszeit einer Kamera.


    Neben anderen Einrichtungen umfasst das EHT-Netzwerk von Radioobservatorien auch das Atacama Large Millimeter/submillimeter Array (ALMA) und das Atacama Pathfinder EXperiment (APEX) in der Atacama-Wüste in Chile, die von der ESO im Namen ihrer europäischen Mitgliedsstaaten mitbetreut werden. Europa trägt auch mit anderen Radioobservatorien zu den EHT-Beobachtungen bei – dem 30-Meter-Teleskop IRAM in Spanien und, seit 2018, dem NOrthern Extended Millimeter Array (NOEMA) in Frankreich – sowie mit einem Supercomputer zur Kombination von EHT-Daten, der vom Max-Planck-Institut für Radioastronomie in Deutschland betrieben wird. Darüber hinaus hat Europa das EHT-Konsortiumsprojekt durch Zuschüsse des Europäischen Forschungsrats und der Max-Planck-Gesellschaft in Deutschland finanziell unterstützt.


    „Es ist sehr faszinierend für die ESO, dass sie über so viele Jahre hinweg eine so wichtige Rolle bei der Entschlüsselung der Geheimnisse schwarzer Löcher und insbesondere von Sgr A* gespielt hat“, kommentierte ESO-Generaldirektor Xavier Barcons. „Die ESO hat nicht nur durch die ALMA- und APEX-Anlagen zu den EHT-Beobachtungen beigetragen, sondern mit ihren anderen Observatorien in Chile auch einige der früheren bahnbrechenden Beobachtungen des galaktischen Zentrums ermöglicht.“ [2]


    Der EHT-Erfolg folgt auf die Veröffentlichung des ersten Bildes eines schwarzen Lochs, genannt M87*, im Zentrum der weiter entfernten Galaxie Messier 87 im Jahr 2019. Die beiden schwarzen Löcher sehen sich bemerkenswert ähnlich, obwohl das schwarze Loch unserer Galaxie mehr als tausendmal kleiner und weniger massereich ist als M87* [3]. „Wir haben zwei völlig unterschiedliche Arten von Galaxien und zwei sehr unterschiedliche Massen von schwarzen Löchern, aber in der Nähe des Randes dieser schwarzen Löcher sehen sie sich verblüffend ähnlich“, sagt Sera Markoff, Co-Vorsitzende des EHT-Wissenschaftsrats und Professorin für theoretische Astrophysik an der Universität von Amsterdam in den Niederlanden. „Das sagt uns, dass die Allgemeine Relativitätstheorie im Nahbereich für diese Objekte dominiert und alle Unterschiede, die wir in größerer Entfernung sehen, auf Abweichungen im Material zurückzuführen sein müssen, das die schwarzen Löcher umgibt.“


    Diese Leistung war wesentlich schwieriger als bei M87*, obwohl uns Sgr A* viel näher ist. Der EHT-Wissenschaftler Chi-kwan ('CK') Chan vom Steward Observatory und dem Department of Astronomy und dem Data Science Institute der University of Arizona, USA, erklärt: „Das Gas in der Nähe der schwarzen Löcher bewegt sich mit der gleichen Geschwindigkeit – fast so schnell wie das Licht – sowohl um Sgr A* als auch um M87*. Aber während das Gas Tage bis Wochen braucht, um das größere M87* zu umkreisen, vollendet es eine Umkreisung um das viel kleinere Sgr A* in nur wenigen Minuten. Das bedeutet, dass sich die Helligkeit und das Muster des Gases um Sgr A* schnell änderten, während die EHT Collaboration es beobachtete – ein bisschen wie der Versuch, ein klares Bild von einem Welpen zu machen, der schnell seinem Schwanz nachjagt.“


    Die Forschenden mussten raffinierte neue Methoden entwickeln, um die Gasbewegung um Sgr A* zu berücksichtigen. Während M87* ein einfacheres, stabileres Ziel war, bei dem fast alle Bilder gleich aussahen, war dies bei Sgr A* nicht der Fall. Das Bild des schwarzen Lochs Sgr A* ist ein Durchschnitt der verschiedenen Bilder, die das Team extrahiert hat, und offenbart schließlich zum ersten Mal den Riesen, der im Zentrum unserer Galaxie lauert.


    Dieser Erfolg wurde durch den Einfallsreichtum von mehr als 300 Forschenden aus 80 Instituten auf der ganzen Welt ermöglicht, die zusammen die EHT Collaboration bilden. Neben der Entwicklung komplexer Werkzeuge zur Bewältigung der Herausforderungen bei der Abbildung von Sgr A* hat das Team fünf Jahre lang sorgfältig gearbeitet und Supercomputer zur Kombination und Analyse ihrer Daten eingesetzt. Gleichzeitig hat es eine noch nie dagewesene Bibliothek simulierter schwarzer Löcher zum Vergleich mit den Beobachtungen zusammengestellt.


    Die Wissenschaftler*innen freuen sich besonders darüber, dass sie nun endlich Bilder von zwei schwarzen Löchern sehr unterschiedlicher Größe haben, was ihnen die Möglichkeit gibt, zu verstehen, worin sie sich ähneln und unterscheiden. Sie haben auch begonnen, die neuen Daten zu nutzen, um Theorien und Modelle darüber zu testen, wie sich Gas in der Umgebung supermassereicher schwarzer Löcher verhält. Dieser Prozess ist noch nicht vollständig verstanden, aber es wird angenommen, dass er eine Schlüsselrolle bei der Entstehung und Entwicklung von Galaxien spielt.


    „Jetzt können wir die Unterschiede zwischen diesen beiden supermassereichen schwarzen Löchern untersuchen, um wertvolle neue Erkenntnisse darüber zu gewinnen, wie dieser wichtige Prozess funktioniert“, sagte EHT-Wissenschaftler Keiichi Asada vom Institut für Astronomie und Astrophysik der Academia Sinica in Taipeh. „Wir haben Bilder von zwei schwarzen Löchern – eines am oberen und eines am unteren Ende der supermassereichen schwarzen Löcher im Universum – so dass wir bei der Untersuchung des Verhaltens der Schwerkraft in diesen extremen Umgebungen viel weiter vorankommen können als jemals zuvor.“


    Die Fortschritte beim EHT gehen weiter: Eine große Beobachtungskampagne im März 2022 umfasste mehr Teleskope als je zuvor. Der kontinuierliche Ausbau des EHT-Netzwerks und bedeutende technologische Modernisierungen werden es den Wissenschaftlern und Wissenschaftlerinnen ermöglichen, in naher Zukunft noch weitere beeindruckende Bilder und Filme von schwarzen Löchern zu präsentieren.


    Endnoten


    [1] Die einzelnen Teleskope, die im April 2017, als die Beobachtungen durchgeführt wurden, am EHT beteiligt waren, sind:: das Atacama Large Millimeter/submillimeter Array (ALMA), das Atacama Pathfinder EXperiment (APEX), das IRAM 30-Meter-Teleskop, das James Clerk Maxwell Teleskop (JCMT), das Large Millimeter Telescope Alfonso Serrano (LMT), das Submillimeter Array (SMA), das UArizona Submillimeter Telescope (SMT), das South Pole Telescope (SPT). Seitdem hat das EHT das Grönland-Teleskop (GLT), das NOrthern Extended Millimeter Array (NOEMA) und das 12-Meter-Teleskop der UArizona auf dem Kitt Peak in sein Netzwerk aufgenommen.

    ALMA ist eine Partnerschaft zwischen der Europäischen Südsternwarte (ESO; Europa, stellvertretend für seine Mitgliedsstaaten), der U.S. National Science Foundation (NSF) und den National Institutes of Natural Sciences (NINS) von Japan, zusammen mit dem National Research Council (Kanada), dem Ministerium für Wissenschaft und Technologie (MOST; Taiwan), dem Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan) und dem Korea Astronomy and Space Science Institute (KASI; Republik Korea), in Zusammenarbeit mit der Republik Chile. Das gemeinsame ALMA-Observatorium wird von der ESO, der Associated Universities, Inc./National Radio Astronomy Observatory (AUI/NRAO) und dem National Astronomical Observatory of Japan (NAOJ) betrieben. APEX, eine Zusammenarbeit zwischen dem Max-Planck-Institut für Radioastronomie (Deutschland), dem Onsala Space Observatory (Schweden) und der ESO, wird von der ESO betrieben. Das 30-Meter-Teleskop wird von IRAM betrieben (die IRAM-Partnerorganisationen sind MPG [Deutschland], CNRS [Frankreich] und IGN [Spanien]). Das JCMT wird von der Ostasiatischen Sternwarte im Auftrag des Nationalen Astronomischen Observatoriums von Japan, der ASIAA, der KASI, des Nationalen Astronomischen Forschungsinstituts von Thailand, des Zentrums für astronomische Megawissenschaften und von Organisationen in Großbritannien und Kanada betrieben. Das LMT wird von INAOE und UMass betrieben, das SMA wird vom Center for Astrophysics | Harvard & Smithsonian und ASIAA betrieben und das UArizona SMT wird von der Universität von Arizona betrieben. Das SPT wird von der Universität von Chicago betrieben, wobei die Universität von Arizona spezielle EHT-Instrumente bereitstellt.

    Das Greenland Telescope (GLT) wird von der ASIAA und dem Smithsonian Astrophysical Observatory (SAO) betrieben. Das GLT ist Teil des ALMA-Taiwan-Projekts und wird zum Teil von der Academia Sinica (AS) und MOST unterstützt. NOEMA wird von IRAM betrieben und das 12-Meter-Teleskop auf dem Kitt Peak wird von der University of Arizona betrieben.

    [2] Eine gute Grundlage für die Interpretation dieses neuen Bildes lieferten frühere Forschungen zu Sgr A*. Astronomen kennen die helle, dichte Radioquelle im Zentrum der Milchstraße in Richtung des Sternbilds Sagittarius seit den 1970er Jahren. Durch die Vermessung der Umlaufbahnen mehrerer Sterne in unmittelbarer Nähe unseres galaktischen Zentrums über einen Zeitraum von 30 Jahren konnten die Teams um Reinhard Genzel (Direktor am Max-Planck-Institut für extraterrestrische Physik in Garching bei München) und Andrea M. Ghez (Professorin im Fachbereich Physik und Astronomie an der University of California, Los Angeles, USA) zu dem Schluss kommen, dass die wahrscheinlichste Erklärung für ein Objekt mit dieser Masse und Dichte ein supermassereiches schwarzes Loch ist. Die Einrichtungen der ESO (einschließlich des Very Large Telescope und des Very Large Telescope Interferometer) und des Keck-Observatoriums wurden für diese Forschung genutzt, für die sie gemeinsam den Nobelpreis für Physik 2020 erhielten.

    [3] Schwarze Löcher sind die einzigen uns bekannten Objekte, bei denen die Masse mit der Größe skaliert. Ein schwarzes Loch, das tausendmal kleiner ist als ein anderes, ist auch tausendmal weniger massereich.

    Wenn Sterne wie unsere Sonne ihren Brennstoff verbraucht haben, schrumpfen sie zu Weißen Zwergen. Manchmal zucken solche Objekte in einer superheißen Explosion noch einmal auf und produzieren einen Feuerball aus Röntgenstrahlung. Einen solchen Ausbruch im Röntgenlicht konnte ein Forschungsteam unter Führung der FAU jetzt zum ersten Mal direkt beobachten.


    „Dabei kam uns auch der Zufall zu Hilfe“, erklärt Ole König vom Astronomischen Institut der FAU in der Dr. Karl Remeis-Sternwarte Bamberg, der gemeinsam mit dem FAU-Astrophysiker Prof. Dr. Jörn Wilms und dem Forschungsteam bestehend aus dem Max-Planck-Institut für extraterrestrische Physik in Garching, der Eberhard Karls Universität Tübingen, der Universitat Politécnica de Catalunya in Barcelona und dem Leibniz-Institut für Astrophysik Potsdam in der renommierten Fachzeitschrift Nature über die Beobachtung berichtet. „Solche Röntgenblitze lassen sich kaum vorhersagen, dauern nur wenige Stunden und das Beobachtungsinstrument muss in dieser Zeit auf den Ausbruch zielen“, schildert der Astrophysiker die Zusammenhänge.


    Bei diesem Instrument handelt es sich um das eROSITA-Röntgen-Teleskop, das eineinhalb Millionen Kilometer von der Erde entfernt seit 2019 den Himmel nach weichen Röntgenstrahlen durchmustert. Dabei wurde am 7. Juli 2020 starke Röntgenstrahlung in einem Bereich des Himmels gemessen, der vier Stunden vorher noch völlig unauffällig gewesen war. Als das Röntgen-Teleskop vier Stunden später die gleiche Stelle am Himmel erneut musterte, war diese Strahlung wieder verschwunden. Weniger als acht Stunden hatte der Röntgenblitz also gedauert, der vorher das Zentrum des Detektors völlig überbelichtet hatte.


    Solche Röntgen-Ausbrüche hatten theoretische Überlegungen bereits vor mehr als 30 Jahren vorgesagt. Sie waren bisher aber noch nie direkt beobachtet worden. Diese Feuerbälle aus Röntgenstrahlen entstehen auf der Oberfläche von Sternen, die eine ähnliche Größe wie unsere Sonne hatten, bevor sie ihre Brennstoffvorräte aus Wasserstoff und später aus Helium tief in ihrem Inneren weitgehend verbraucht hatten. Diese alten Sterne schrumpfen sehr stark zusammen, bis ein „Weißer Zwerg“ übrigbleibt, der ähnlich groß wie die Erde ist, aber eine Masse enthält, die ähnlich groß wie unsere Sonne sein kann. „Diese Verhältnisse kann man sich an einem Beispiel gut vorstellen“, erklärt Jörn Wilms: „Stellt man sich die Sonne in der Größe eines Apfels vor, hätte die Erde die Dimension eines Stecknadelkopfes, der in zehn Metern Entfernung um den Apfel kreist."


    Künstlerische Darstellung eines explodierenden Weißen Zwergs. Illustration: eROSITA Collaboration/Annika Kreikenbohm


    Verkleinert man wiederum einen Apfel auf die Größe eines Stecknadelkopfes, behält dieses winzige Teilchen das vergleichsweise riesige Gewicht des Apfels. „Ein Teelöffel Materie aus dem Inneren eines Weißen Zwergs hat daher leicht die Masse eines Lastkraftwagens“, erklärt Jörn Wilms weiter. Weil diese ausgebrannten Sterne hauptsächlich aus Sauerstoff und Kohlenstoff bestehen, ähneln sie einem ebenfalls aus Kohlenstoff bestehenden riesigen Diamanten, der die Größe der Erde hat und im Weltraum schwebt. Diese Objekte in Form eines Edelsteins sind zwar immer noch heiß und leuchten daher weiß. Nur ist diese Strahlung schwach und lässt sich daher von der Erde aus gesehen kaum entdecken.


    Es sei denn, der alte Stern wird von einem Stern begleitet, in dem das Sonnenfeuer noch brennt und von dem dann Material auf ihn übergehen kann. „Dieser Wasserstoff kann sich mit der Zeit zu einer nur wenige Meter dicken Schicht auf der Oberfläche der Sternenleiche sammeln“, erklärt FAU-Astrophysiker Jörn Wilms. In dieser Schicht aber erzeugt die riesige Schwerkraft einen gigantischen Druck, der so groß werden kann, dass dort das Sternenfeuer wieder zündet. In einer Kettenreaktion entsteht rasch eine riesige Explosion, in der die Wasserstoffschicht wieder abgesprengt wird. Die Röntgenstrahlung einer solchen Explosion hat dann am 7. Juli 2020 die Detektoren von eROSITA getroffen und überbelichtet.


    „Mit Modellrechnungen, mit denen wir ursprünglich die Entwicklung des Röntgen-Instruments begleitet hatten, konnten wir dann in einer aufwändigen Arbeit das eigentlich überbelichtete Bild genauer analysieren und so erstmals einen Blick hinter die Kulissen einer solchen „Nova“ genannten Explosion eines Weißen Zwergs werfen“, schildert Jörn Wilms die weitere Forschung. Nach diesen Ergebnissen sollte der Weiße Zwerg ungefähr die Masse unserer Sonne haben und damit relativ groß sein. Bei der Explosion entstand ein 327.000 Grad heißer Feuerball, der damit rund sechzigmal wärmer als unsere Sonne war.


    Weil bei solchen Novae der Energie-Nachschub fehlt, kühlen sie rasch aus, und die Röntgenstrahlung wird weicher, bis sie schließlich zu sichtbarem Licht wird, das einen halben Tag nach der eROSITA-Entdeckung auch die Erde erreichte und mit optischen Teleskopen beobachtet wurde. „Es tauchte dann ein scheinbar heller Stern auf, der sogar mit dem Auge sichtbar war“, erklärt Ole König. Solche scheinbaren „neuen Sterne“ wurden auch früher schon beobachtet und wegen ihres unverhofften Auftauchens „Nova Stella“ genannt, was „neuer Stern“ bedeutet. Weil diese Nova aber erst nach dem Röntgenblitz sichtbar wird, ist eine Vorhersage für solche Ausbrüche sehr schwierig, die daher eher zufällig die Röntgen-Detektoren treffen. „Da hatten wir wirklich Glück“, freut sich Ole König.


    Weitere Infos und ein Video auf den Seiten der Uni Erlangen unter https://www.fau.de/2022/05/new…-zwerg-direkt-beobachtet/ vom AIP in Potsdam unter https://www.aip.de/de/news/x-ray-fireball-of-a-nova/ und vom MPE unter https://www.mpe.mpg.de/7873053/news20220512

    Der Fokus wird ganz sicher reichen. SCs sind ja so gemacht, daß du damit auch mit Okularen ganz ohne den optischen Weg durch den Okularrevolver in den Fokus kommst, nur mit einer Hülse, die an den Tubs kommt (der Visual Back, den Alex oben erwähnt hat). SCs haben da (im Gegensatz zu Newtons) einen ziemlich großen Spielraum beim Fokus


    Viele Grüße

    Caro

    Hallo Martin,


    da ist sowohl am Tubus als auch am Okularrevolver ein Gewinde, denn eigentlich gehört der Okularrevolver da ja direkt dran. Solange der Vorbesitzer damit keinen Unsinn a la Verkleben gemacht hat, einfach raus mit dem komischen Okularauszug-Teil und fertig.


    Viele Grüße

    Caro

    Hab ich heute Morgen schon ;)


    Die Sache ist natürlich aber die, daß das eher eine Verlagsentscheidung ist. Wieviel die Redaktion bei sowas an Mitspracherecht hat, ist unklar...


    Viele Grüße

    Caro

    Hallo Martin,


    das sieht mir irgendwie nach einer Hilfskonstruktion aus, die - frei nach Werner Beinhart - nich original is. Und auf den Okularrevolver kannst du im Zweifelsfalle in der Tat gut verzichten. Was ist denn mit der eigentlichen Hauptspiegel-Fokussierung über den Drehknopf, funktioniert die? Für visuelle Zwecke reicht die normalerweise vollkommen aus.



    Viele Grüße

    Caro

    Eine Gruppe von Astronomen und Astronominnen unter der Leitung von Sierk van Terwisga vom Max-Planck-Institut für Astronomie hat die Massenverteilung von über 870 planetenbildenden Scheiben in der Orion A-Wolke analysiert. Durch die Auswertung der statistischen Eigenschaften dieser beispiellos großen Stichprobe von Scheiben und die Entwicklung eines innovativen Datenbearbeitungsverfahrens fanden sie heraus, dass weit entfernt von widrigen Umgebungen wie heißen Sternen der Rückgang der Scheibenmasse nur von ihrem Alter abhängt. Die Ergebnisse deuten darauf hin, dass sich zumindest innerhalb einer Entfernung von bis zu 1000 Lichtjahren von der Erde planetenbildende Scheiben und Planetensysteme auf ähnliche Weise entwickeln.


    Einige der spannendsten Fragen der heutigen astronomischen Forschung lauten: Wie sehen andere Planetensysteme aus? Wie vergleichbar ist das Sonnensystem mit anderen Planetensystemen? Ein Team von Astronomen und Astronominnen hat nun entscheidende Hinweise zur Lösung dieses Rätsels gefunden. „Bislang wussten wir nicht genau, welche Eigenschaften die Entwicklung von planetenbildenden Scheiben um junge Sterne dominieren“, sagt Sierk van Terwisga, Wissenschaftler am Max-Planck-Institut für Astronomie in Heidelberg. Er ist der Hauptautor des zugrundeliegenden Forschungsartikels, der heute in Astronomy & Astrophysics veröffentlicht wurde. „Unsere neuen Ergebnisse zeigen nun, dass in Umgebungen ohne relevante äußere Einflüsse die beobachtete Scheibenmasse, die für die Bildung neuer Planeten zur Verfügung steht, nur vom Alter des Systems aus Stern und Scheibe abhängt“, ergänzt van Terwisga.


    Die Scheibenmasse ist die entscheidende Eigenschaft bei der Untersuchung der Entwicklung von planetenbildenden Scheiben. Diese Größe bestimmt, wie viel Material für die Umsetzung in Planeten zur Verfügung steht. Je nach Alter der Scheibe kann sie auch Hinweise auf die dort bereits vorhandenen Planeten geben. Äußere Einflüsse wie Strahlung und Winde von nahen massereichen Sternen wirken sich offensichtlich auf den Fortbestand der Scheiben aus. Solche Umgebungen sind jedoch selten, und diese Prozesse verraten nicht viel über die Scheiben selbst. Stattdessen interessieren sich die Fachleute mehr für die internen Scheibeneigenschaften wie das Alter, die chemische Zusammensetzung oder die Dynamik der Ursprungswolke, aus der die jungen Sterne mit ihren Scheiben hervorgegangen sind.


    Die riesige Sternentstehungswolke Orion A, wie sie vom Instrument SPIRE (Spectral and Photometric Imaging Receiver) an Bord des Weltraumteleskops Herschel beobachtet wurde. Es zeigt die großräumige Verteilung von kaltem Staub. Orion A ist etwa 1350 Lichtjahre entfernt und besteht aus einzelnen Sternentstehungsgebieten, die durch ihre Beschriftung gekennzeichnet sind. Die Positionen der mit ALMA beobachteten planetenbildenden Scheiben (+) sind angegeben, während Scheiben mit Staubmassen von über 100 Erdmassen als blaue Punkte erscheinen. Der berühmte Orionnebel, der mit bloßem Auge am Himmel zu sehen ist, beherbergt den Orionnebel-Haufen (ONC), zu dem mehrere massereiche Sterne gehören, die intensive Strahlung aussenden. Bild: S.E. van Terwisga et al./MPIA


    Um die verschiedenen Beiträge zu entflechten, wählte das Astronomenteam eine große und bekannte Region junger Sterne mit Scheiben aus, die Orion A-Wolke. Sie ist etwa 1350 Lichtjahre von der Erde entfernt. „Orion A lieferte uns eine beispiellos große Stichprobe von mehr als 870 Scheiben um junge Sterne. Dies war entscheidend, um nach kleinen Variationen in der Scheibenmasse in Abhängigkeit vom Alter und sogar von der lokalen Umgebung innerhalb der Wolke suchen zu können“, erklärt Álvaro Hacar, Mitautor und Wissenschaftler an der Universität Wien, Österreich. Die Stichprobe geht auf frühere Beobachtungen mit dem Herschel-Weltraumteleskop zurück, mit denen die Scheiben identifiziert werden konnten. Die Kombination mehrerer Wellenlängen lieferte ein Kriterium zur Schätzung ihres Alters. Da sie alle zur gleichen Wolke gehören, erwarteten die Forschenden nur geringe Einflüsse durch chemische und zeitliche Veränderungen der Wolke. Sie vermieden jeglichen Einfluss von massereichen Sternen im nahegelegenen Sternhaufen des Orionnebels (ONC), indem sie Scheiben ausschlossen, die weniger als 13 Lichtjahre von ihm entfernt sind.


    Zur Messung der Scheibenmasse setzte das Team das Atacama Large Millimeter/Submillimeter Array (ALMA) ein, das sich auf dem Chajnantor Plateau in der chilenischen Atacama-Wüste befindet. ALMA besteht aus 66 Parabolantennen, die wie ein einziges Teleskop mit einer einstellbaren Winkelauflösung funktionieren. Die Wissenschaftler verwendeten einen Beobachtungsmodus, der es ihnen ermöglichte, jede Scheibe bei einer Wellenlänge von etwa 1,2 Millimetern effizient anzupeilen. Die kalten Scheiben sind in diesem Spektralbereich sehr hell. Der Beitrag der Zentralsterne ist dagegen vernachlässigbar. Mit diesem Ansatz konnten die Astronomen und Astronominnen die Staubmassen der Scheiben bestimmen. Allerdings sind die Beobachtungen unempfindlich gegenüber Objekten, die viel größer als ein paar Millimeter sind, z. B. Felsbrocken und Planeten. Daher hat das Team tatsächlich die Masse des Scheibenmaterials gemessen, aus dem sich Planeten bilden können.


    Vor der Berechnung der Scheibenmassen kombinierten und kalibrierten die Forschenden die Daten von mehreren Dutzend ALMA-Teleskopen. Diese Aufgabe ist bei großen Datensätzen eine ziemliche Herausforderung. Mit Standardverfahren hätte es Monate gedauert, die gesammelten Daten zu prozessieren. Stattdessen entwickelte das Team mit Hilfe von Parallelcomputern eine neue Methode. „Unser neuer Ansatz erhöhte die Verarbeitungsgeschwindigkeit um das 900-fache“, betont Mitautor Raymond Oonk vom kooperierenden IT-Dienstleister SURF. Die 3000 CPU-Stunden, die nötig waren, um die Aufgabe zu erledigen und die Daten für die anschließende Analyse vorzubereiten, vergingen in weniger als einem Tag.


    Insgesamt befinden sich in Orion A planetenbildende Scheiben, die jeweils bis zu einigen hundert Erdmassen Staub enthalten. Von den 870 Scheiben enthalten jedoch nur 20 davon Staub von mindestens 100 Erdmassen. Im Allgemeinen nimmt die Zahl der Scheiben zu höheren Massen hin rasch ab, wobei die meisten weniger als 2,2 Erdmassen Staub enthalten. „Um nach Abweichungen zu suchen, haben wir die Orion A-Wolke aufgeteilt und diese Regionen separat untersucht. Dank den Hunderten von Scheiben waren die Teilmengen noch groß genug, um statistisch aussagekräftige Ergebnisse zu liefern“, erklärt van Terwisga.


    In der Tat fand das Team innerhalb von Orion A geringfügige Schwankungen in der Verteilung der Scheibenmassen auf einer Skala von einigen zehn Lichtjahren, die jedoch alle durch einen Alterseffekt erklärt werden können, d. h. innerhalb von einigen Millionen Jahren nehmen die Scheibenmassen tendenziell zu älteren Populationen hin ab. Jedoch haben Gruppen von planetenbildenden Scheiben desselben Alters innerhalb der Fehlertoleranz dieselbe Massenverteilung. Es ist keineswegs überraschend, dass die Staubmasse in planetenbildenden Scheiben mit der Zeit abnimmt. Schließlich ist Staub eines der Rohmaterialien für Planeten. Die Bildung von Planeten reduziert also zweifellos die Menge an verfügbarem Staub. Andere bekannte Prozesse sind die Staubmigration in Richtung der Scheibenmitte und das Verdampfen von Staub durch die Strahlung des Zentralsterns. Dennoch ist es überraschend, dass eine so starke Korrelation zwischen Scheibenmasse und Alter besteht.


    All diese Scheiben sind aus der gleichen Umgebung entstanden, die heute die Orion A-Wolke bildet. Wie verhält sich dies im Vergleich zu anderen jungen Stern-Scheiben-Populationen? Die Astronomen gingen dieser Frage nach, indem sie ihre Ergebnisse mit mehreren nahe gelegenen Sternentstehungsgebieten mit planetenbildenden Scheiben verglichen. Bis auf zwei passen alle gut zu der in Orion A gefundenen Masse-Alter-Beziehung. „Insgesamt sind wir der Ansicht, dass unsere Studie zeigt, dass zumindest innerhalb der nächsten etwa 1000 Lichtjahre alle Gruppierungen von planetenbildenden Scheiben die gleiche Massenverteilung bei einem bestimmten Alter aufweisen. Und sie scheinen sich mehr oder weniger auf die gleiche Weise zu entwickeln“, so van Terwisga abschließend. Das Ergebnis könnte sogar ein Hinweis auf die Entstehung von verblüffend ähnlichen Planetensystemen sein.


    In einem nächsten Schritt wird das Team mögliche Einflüsse von nahen Sternen auf kleineren Abständen von einigen Lichtjahren untersuchen. Während sie das starke Strahlungsfeld, das von den massereichen Sternen im ONC verursacht wird, vermieden haben, gibt es möglicherweise andere, weniger stark strahlende Feldsterne, die den Staub in benachbarten Scheiben beeinflussen und die Massenstatistik der Scheiben verändern könnten. Solche Beiträge könnten einige der Abweichungen erklären, die in der Beziehung zwischen Scheibenmasse und Alter gefunden wurden. Die Ergebnisse können dazu beitragen, das Gesamtbild einer vom Alter dominierten Entwicklung der planetenbildenden Scheiben zu stärken.


    Weitere Infos und Bilder auf den Seiten des MPIA unter http://www.mpia.de/aktuelles/wissenschaft/2022-07-soda

    Expertin ist relativ, ich fürchte da muß ich passen.


    Auf jeden Fall ist meine Kinnlade unten angesichts des Evershed-Flows (die Bewegung nach außen in der Penumbra). Alleine dafür: Chapeau


    Viele Grüße

    Caro

    Hallo Sven,


    die Sache ist natürlich die, daß daß das sehr schnell sehr umfangreich wird, denn es gibt/gab halt unzählige Kulturen auf der Erde, die vollkommen andere Sternbildtraditionen haben/hatten als das, was heute die offiziell anerkannten Sternbilder sind. Sternbilder müssen auch nicht unbedingt aus Sternen bestehen, deshalb die Formulierung der Wettbewerbsausschreibung, die auch soetwas wie Dunkelwolken enthält. Das bekannteste Beispiel in dieser Richtung ist der "Emu in the Sky", den die indigenen Völker Australiens durch die Milchstraße legen.


    Ein paar Einblicke gibt es hier:

    External Content www.youtube.com
    Content embedded from external sources will not be displayed without your consent.
    Through the activation of external content, you agree that personal data may be transferred to third party platforms. We have provided more information on this in our privacy policy.


    Viele Grüße

    Caro

    Im letzten Jahr hat das IAU Office of Astronomy for Education (für das ich unter anderem tätig bin ;)) zum ersten Mal einen Astrofoto-Wettbewerb ausgeschrieben, dessen Ziel es war, in Bereichen der Astronomie, in denen bislang nur wenig hochwertiges Bildmaterial unter Creative-Commons-Lizenzen zur Verfügung steht, hochwertige Astrofotos als Bildungsmaterialen zur freien Verwendung zu sammeln.


    Dieser Wettbewerb geht nun in die zweite Runde, in diesem Jahr mit den Kategorien „Weitfeld-Himmelsaufnahmen“ und „Zeitraffervideos, die die Bewegung des Sternhimmels dokumentieren“.Die Bilder und Videos sollten großflächige Strukturen am Nachthimmel zeigen, die mit dem bloßen Auge sichtbar sind und denen eine kulturelle Bedeutung zukommt. Das können ausgedehnte Sterngruppen, Sternbilder, größere Dunkelwolken, helle diffuse Muster oder helle einzelne Sterne mit ihrem weiteren Umfeld sein. Gesucht sind insbesondere auch Aufnahmen von historischen oder zeitgenössischen indigenen Strukturen am Nachthimmel aus verschiedenen Kulturen auf der ganzen Welt.


    Der diesjährige Wettbewerb läuft bis zum 12. Juni 2022 um 12 Uhr MEZ. Die Einsendungen werden von einer internationalen Jury aus Astrofotograf*innen und Personen aus der astronomischen Bildungsarbeit bewertet, die neben ästhetischen und technischen Kriterien auch den pädagogischen Wert jedes Beitrags im Kontext des Unterrichts an Grund- und weiterführenden Schulen sorgfältig prüfen wird. Im pädagogischen Kontext bietet es sich an, Strukturen am Himmel als Weitwinkelaufnahmen mit ihrem Umfeld zu zeigen, in dem auch andere helle Sterne oder Sternbilder als Referenz sichtbar sind, bzw. mit einer Landschaft im Vordergrund (also TWAN-style-artige „Nightscapes“).


    In der Kategorie „Zeitraffervideos, die die Bewegung des Sternhimmels dokumentieren“ sind für die erst-, zweit- und drittplatzierten Beiträge Geldpreise in Höhe von 750 €, 500 € und 250 € ausgelobt. In der Kategorie „Weitfeld-Himmelsaufnahmen“ werden bis zu 30 Beiträge mit je 250 € prämiert. Alle prämierten Beiträge werden in der OAE-Sammlung für astronomische Bildungsmaterialien und im IAU-Bildarchiv unter der internationalen Creative-Commons-Attribution-(CC BY)-4.0-Lizenz veröffentlicht (das Urheberrecht an den Bildern verbleibt jedoch bei den Fotograf*innen). Darüber hinaus werden alle Teilnehmer*innen ermutigt, ihre Beiträge unter einer Creative-Commons-CC-BY-4.0-Lizenz zu veröffentlichen, auch wenn sie keinen Preis erhalten.


    Weitere Infos zum Wettbewerb, den Wettbewerbsregeln und dem Einreichungsverfahren auf der Webseite des Wettbewerbs (auf Englisch).

    Ein Team von Astronom*innen hat mit Hilfe des Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) eine neue Art von Sternexplosion beobachtet – eine Mikronova. Diese Ausbrüche ereignen sich auf der Oberfläche bestimmter Sterne und können in nur wenigen Stunden eine Menge an Sternmaterial von jeweils rund 3,5 Milliarden Mal die Cheops-Pyramide von Gizeh verbrennen.


    „Wir haben erstmalig ein Phänomen entdeckt und identifiziert, das wir als Mikronova bezeichnen“, erklärt Simone Scaringi, Astronom an der Durham University in Großbritannien, der die heute in Nature veröffentlichte Studie über diese Explosionen geleitet hat. „Dieses Ereignis stellt unser Verständnis davon in Frage, wie thermonukleare Explosionen in Sternen ablaufen. Bisher dachten wir, wir wüssten das, aber diese Entdeckung zeigt einen völlig neuen Mechanismus auf“, fügt er hinzu.


    Mikronovae sind extrem starke Ereignisse, aber in astronomischen Maßstäben klein; sie sind viel weniger energiereich als die als Novae bekannten Sternexplosionen, die Astronom*innen seit Jahrhunderten kennen. Beide Arten von Explosionen ereignen sich auf Weißen Zwergen, toten Sternen mit einer Masse, die etwa der unserer Sonne entspricht, aber so klein wie die Erde ist.


    Ein Weißer Zwerg in einem Doppelsternsystem kann seinem Begleitstern Material, vor allem Wasserstoff, entreißen, wenn sie nahe genug beieinander sind. Wenn dieses Gas auf die sehr heiße Oberfläche des Weißen Zwergsterns fällt, werden die Wasserstoffatome explosionsartig zu Helium fusioniert. Bei Novae finden diese thermonuklearen Explosionen auf der gesamten Sternoberfläche statt. „Solche Detonationen lassen die gesamte Oberfläche des Weißen Zwerges brennen und mehrere Wochen lang hell leuchten“, erklärt Mitautorin Nathalie Degenaar, Astronomin an der Universität von Amsterdam, Niederlande.


    Künstlerische Darstellung einer Mikronova. Illustration: ESO/M. Kornmesser, L. Calçada


    Mikronovae sind ähnliche Explosionen, die kleiner und schneller sind und nur einige Stunden dauern. Sie treten bei einigen Weißen Zwergen mit starken Magnetfeldern auf, die Material in Richtung der magnetischen Pole des Sterns schleudern. „Wir haben jetzt zum ersten Mal gesehen, dass die Wasserstofffusion auch lokal begrenzt stattfinden kann. An der Basis der Magnetpole einiger Weißer Zwerge kann der Wasserstoffbrennstoff festgehalten werden, so dass die Fusion nur an diesen Magnetpolen stattfindet“, sagt Paul Groot, Astronom an der Radboud Universität in den Niederlanden und Mitautor der Studie.


    „Das führt dazu, dass Mikrofusionsbomben gezündet werden, die etwa ein Millionstel der Stärke einer Novaexplosion haben, daher der Name Mikronova“, so Groot weiter. Auch wenn der Begriff »mikro« vermuten lässt, dass es sich um kleine Ereignisse handelt, sollte man sich nicht täuschen: Ein einziger dieser Ausbrüche kann etwa 20 000 000 Billionen kg Material verbrennen, das entspricht etwa 3,5 Milliarden Cheops-Pyramiden von Gizeh [1]. Diese neuen Mikronovae fordern das Verständnis der Astronominnen und Astronomen über Sternexplosionen heraus und kommen möglicherweise häufiger vor als bisher angenommen. „Das zeigt, wie dynamisch das Universum ist. Diese Ereignisse können tatsächlich recht häufig vorkommen, aber weil sie so schnell sind, ist ihre Beobachtung schwierig“, erklärt Scaringi.


    Das Team stieß zum ersten Mal auf diese mysteriösen Mikroexplosionen, als es die Daten des Transiting Exoplanet Survey Satellite (TESS) der NASA analysierte. „Bei der Durchsicht der von NASA TESS gesammelten astronomischen Daten entdeckten wir etwas Ungewöhnliches: einen hellen optischen Lichtblitz, der einige Stunden anhielt. Bei der weiteren Suche fanden wir mehrere ähnliche Signale“, sagt Degenaar. Das Team beobachtete mit TESS drei Mikronovae: zwei davon stammten von bekannten Weißen Zwergen, aber der dritte erforderte weitere Beobachtungen mit dem X-Shooter-Instrument am VLT der ESO, um seinen Status als Weißer Zwerg zu bestätigen.


    „Mit Hilfe des Very Large Telescope der ESO konnten wir feststellen, dass alle diese optischen Blitze von Weißen Zwergen erzeugt wurden“, sagt Degenaar. „Diese Beobachtung war entscheidend für die Interpretation unserer Ergebnisse und für die Entdeckung der Mikronovae“, fügt Scaringi hinzu.


    Die Entdeckung der Mikronovae erweitert das Repertoire der bekannten Sternexplosionen. Das Team möchte nun weitere dieser schwer zugänglichen Ereignisse erfassen, was groß angelegte Durchmusterungen und schnelle Folgemessungen erfordert. „Die schnelle Reaktion von Teleskopen wie dem VLT oder dem New Technology Telescope der ESO und die Vielzahl der verfügbaren Instrumente werden es uns ermöglichen, diese mysteriösen Mikronovae im Detail zu entschlüsseln“, so Scaringi abschließend.


    Endnoten

    [1] 1 Billion = 1 Million Million = 1.000.000.000.000 oder 10^12 bzw. 1 Milliarde = tausend Millionen = 1.000.000.000 oder 10^9. Das Gewicht der Cheops-Pyramide von Gizeh in Kairo, Ägypten beträgt etwa 5.900.000.000 kg.


    Weitere Infos, Bilder und Videos auf den Seiten der ESO unter https://www.eso.org/public/germany/news/eso2207/

    Die MAGIC-Teleskope haben die Nova RS Ophiuchi bei extrem hoher Energie im Gammabereich beobachtet. Die Gammastrahlung geht von Protonen aus, die in der Schockwelle nach der Explosion auf höchste Energien beschleunigt werden. Damit liegt nahe, dass Novae auch eine Quelle für die allgegenwärtige kosmische Strahlung im Universum sind: Diese besteht überwiegend aus Protonen, die mit nahezu Lichtgeschwindigkeit durchs All rasen.


    Licht an, Licht aus – so könnte man das Verhalten der Nova beschreiben, die auf den Namen RS Ophiuchi (RS Oph) hört. Alle etwa 15 Jahre kommt es im Sternbild des Schlangenträgers zu einer dramatischen Explosion. Geburtsort einer Nova sind Systeme, in denen zwei sehr unterschiedliche Sterne in einer parasitären Paarbeziehung leben: Ein weißer Zwerg, ein kleiner, ausgebrannter und ungeheuer dichter Stern – ein Teelöffel seiner Materie wiegt ungefähr 1 Tonne – umkreist einen roten Riesen, einen alten Stern, der bald verglühen wird.


    Der sterbende Riesenstern füttert den Weißen Zwerg mit Materie: Er stößt seine äußere Wasserstoffschicht ab, das Gas strömt auf den nahen Weißen Zwerg. Dieser Materiefluss hält an, bis der Winzling sich "überfrisst" und zu heiß wird. Die Temperatur und der Druck in den neu gewonnen Sternhüllen sind dann so groß, dass sie in einer gigantischen thermonuklearen Explosion weggeschleudert werden. Der Zwergstern bleibt dabei erhalten und der Kreislauf beginnt von Neuem – bis sich das Spektakel wiederholt.


    Das Doppelstern-System RS Ophiuchi: Vom Roten Riesen strömt Materie auf den Weißen Zwerg. Die neu hinzugekommenen Sternhüllen explodieren etwa alle 15 Jahre in einer hellen Nova. Illustration: superbossa.com/MPP


    Dass bei solchen Explosionen hohe Energien im Spiel sind, war vermutet worden. Die beiden MAGIC-Teleskope zeichneten Gammastrahlen mit dem Wert von 250 Gigaelektronenvolt (GeV) auf, mit die höchsten Energien, die je bei einer Nova gemessen wurden. Zum Vergleich: Die Strahlung ist hundert Milliarden Mal energiereicher als das sichtbare Licht. MAGIC beobachtete die Nova nach Meldungen von Instrumenten, die auf andere Wellenlängen spezialisiert sind. "Der dramatische Ausbruch der Nova RS-Oph zeigt, dass sich die kurze Reaktionszeit der MAGIC-Teleskope auszahlt: Sie brauchen höchstens 30 Sekunden, um sich auf ein neues Ziel auszurichten", sagt David Green, Wissenschaftler am Max-Planck-Institut für Physik und einer der Autoren der Beitrags.


    Nach der Explosion breiteten sich mehrere Stoßfronten im Sternwind des Roten Riesen und im interstellaren Medium aus, welches das Doppelstern-System umgibt. Diese Schockwellen sind ein natürlicher Teilchenbeschleuniger, also ein riesiges Kraftwerk, das Teilchen auf nahezu Lichtgeschwindigkeit bringt. Die kombinierten Messdaten legen nahe, dass die Gammastrahlen von energiereichen Protonen, Kernen von Wasserstoffatomen, ausgehen.


    "Damit kommen Nova-Ausbrüche auch als Quelle für die kosmische Strahlung in Frage", erklärt David Green. "Allerdings spielen sie dabei eher die Rolle von Lokalmatadoren. Das heißt, sie tragen nur in ihrer unmittelbaren Umgebung zur kosmischen Strahlung bei. Die Hauptakteure der kosmischen Strahlung sind Supernova-Überreste. Die Schockwellen, die von dieser Art Sternexplosion ausgehen, sind bedeutend heftiger als bei einer Nova." Um das komplizierte Zusammenspiel von energiereichen Himmelsereignissen und dem interstellaren Medium in der Milchstraße vollständig zu verstehen, brauchen wir weitere Beobachtungen wie die aktuell veröffentlichten . Die MAGIC-Kollaboration wird daher auch in Zukunft Ausschau nach „unruhigen“ Objekten in unserer Galaxie – und darüber hinaus – halten.


    Weitere Infos auf den Seiten des MPP unter https://www.mpp.mpg.de/aktuell…beobachten-sternexplosion

    Ein internationales Team von Astronom*innen hat mit bodengebundenen Teleskopen, darunter das Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO), die Temperaturen in der Atmosphäre des Neptun über einen Zeitraum von 17 Jahren verfolgt. Sie fanden einen überraschenden Rückgang der globalen Temperaturen des Neptun, gefolgt von einer dramatischen Erwärmung an seinem Südpol.


    „Diese Veränderung war unerwartet“, sagt Michael Roman, wissenschaftlicher Mitarbeiter an der University of Leicester, Großbritannien, und Hauptautor der Studie. „Da wir Neptun während seines südlichen Frühsommers beobachtet haben, haben wir erwartet, dass die Temperaturen langsam ansteigen und nicht abnehmen.“ Wie die Erde erlebt auch der Neptun Jahreszeiten, wenn er die Sonne umkreist. Allerdings dauert eine Jahreszeit auf Neptun etwa 40 Jahre, während ein Neptunjahr 165 Erdjahre dauert. Seit 2005 ist auf der südlichen Hemisphäre des Neptun Sommerzeit, und die Astronom*innen wollten sehen, wie sich die Temperaturen nach der südlichen Sommersonnenwende verändern.


    Die Wissenschaftler*innen untersuchten fast 100 Wärmebildaufnahmen von Neptun, die über einen Zeitraum von 17 Jahren aufgenommen worden waren, um die allgemeine Entwicklung der Temperatur des Planeten detaillierter als je zuvor nachvollziehen zu können. Diese Daten zeigten, dass sich der größte Teil des Planeten trotz des beginnenden südlichen Sommers in den letzten zwei Jahrzehnten allmählich abgekühlt hat. Die globale Durchschnittstemperatur von Neptun ist zwischen 2003 und 2018 um 8 °C gesunken.


    Die Astronomen waren dann überrascht, als sie in den letzten beiden Jahren ihrer Beobachtungen eine dramatische Erwärmung von Neptuns Südpol entdeckten, da die Temperaturen zwischen 2018 und 2020 rasch um 11 °C anstiegen. Obwohl der warme Polarwirbel des Neptun schon seit vielen Jahren bekannt ist, wurde eine so schnelle Erwärmung des Pols noch nie zuvor auf dem Planeten beobachtet. „Unsere Daten decken weniger als die Hälfte einer Jahreszeit des Neptuns ab, so dass niemand erwartet hatte, große und schnelle Veränderungen zu sehen“, sagt Mitautor Glenn Orton, leitender Forscher am Jet Propulsion Laboratory (JPL) des Caltech in den USA.


    Diese Zusammenstellung zeigt Wärmebilder von Neptun, die zwischen 2006 und 2020 aufgenommen wurden. Die ersten drei Bilder (2006, 2009, 2018) stammen vom Instrument VISIR am Very Large Telescope der ESO, während das Bild von 2020 mit dem Instrument COMICS am Subaru Telescope gewonnen wurde (VISIR war Mitte/Ende 2020 wegen der Pandemie nicht in Betrieb). Nach der allmählichen Abkühlung des Planeten scheint sich der Südpol in den letzten Jahren dramatisch erwärmt zu haben, wie ein heller Fleck an der Unterseite des Neptuns auf den Bildern von 2018 und 2020 zeigt. Bild: ESO/M. Roman, NAOJ/Subaru/COMICS


    Die Astronom*innen haben die Temperatur des Neptun mit Wärmebildkameras gemessen, die das von astronomischen Objekten ausgestrahlte Infrarotlicht messen. Für ihre Analyse kombinierte das Team alle vorhandenen Bilder von Neptun, die in den letzten zwei Jahrzehnten von bodengebundenen Teleskopen aufgenommen wurden. Sie untersuchten das Infrarotlicht, das von einer Schicht der Neptunatmosphäre, der Stratosphäre, ausgestrahlt wird. Auf diese Weise konnte sich das Team ein Bild von Neptuns Temperatur und deren Schwankungen während eines Teils seines südlichen Sommers machen.


    Da der Neptun etwa 4,5 Milliarden Kilometer entfernt und sehr kalt ist – die Durchschnittstemperatur des Planeten liegt bei etwa -220 °C – ist es nicht einfach, seine Temperatur von der Erde aus zu messen. „Diese Art von Untersuchung ist nur mit empfindlichen Infrarotbildern von großen Teleskopen wie dem VLT möglich, die Neptun präzise beobachten können, und diese stehen erst seit etwa 20 Jahren zur Verfügung“, sagt Mitautor Leigh Fletcher, Professor an der Universität Leicester.


    Etwa ein Drittel aller Aufnahmen stammt vom VLT Imager and Spectrometer for mid-InfraRed (VISIR) Instrument am VLT der ESO in der chilenischen Atacamawüste. Aufgrund der Größe des Spiegels und der Höhenlage des Teleskops verfügt es über eine sehr hohe Auflösung und Datenqualität, die die klarsten Bilder von Neptun liefert. Das Team verwendete auch Daten des Spitzer-Weltraumteleskops der NASA und Bilder, die mit dem Gemini South-Teleskop in Chile sowie mit dem Subaru-Teleskop, dem Keck-Teleskop und dem Gemini North-Teleskop, alle auf Hawaii, aufgenommen wurden.


    Da die Temperaturschwankungen des Neptun so unerwartet waren, wissen die Forschenden noch nicht, was sie verursacht haben könnte. Sie könnten auf Veränderungen in der Stratosphärenchemie des Neptun, auf zufällige Wettermuster oder sogar auf den Sonnenzyklus zurückzuführen sein. In den kommenden Jahren werden weitere Beobachtungen erforderlich sein, um die Gründe für diese Schwankungen zu erforschen. Künftige bodengestützte Teleskope wie das Extremely Large Telescope (ELT) der ESO könnten Temperaturschwankungen wie diese genauer beobachten, während das James Webb Space Telescope der NASA/ESA/CSA beispiellose neue Karten der Chemie und Temperatur in der Neptunatmosphäre liefern wird.


    „Ich denke, dass der Neptun selbst für viele von uns sehr faszinierend ist, weil wir noch so wenig über ihn wissen“, sagt Roman. „Dies alles deutet auf einen komplexen Aufbau der Neptunatmosphäre hin und darauf, wie sie sich mit der Zeit verändert.“


    Weitere Infos, Bilder und Videos auf den Seiten der ESO unter https://www.eso.org/public/germany/news/eso2206/

    Miteinander verschmelzende supermassereiche schwarze Löcher in den Zentren wechselwirkender Galaxien füllen das Universum mit extrem niederfrequenten Gravitationswellen. Astronom*innen haben bereits mit großen Radioteleskopen nach diesen Wellen gesucht, um die subtilen Auswirkungen dieser Raumzeitwellen auf die von Pulsaren in unserer Galaxie ausgesandten Radiowellen zu beobachten. Ein internationales Team von Wissenschaftlern hat nun gezeigt, dass auch hochfrequente Gammastrahlung, aufgenommen mit dem Fermi-Teleskop der NASA, für diese Suche genutzt werden kann. Die Verwendung von Gammastrahlen anstelle von Radiowellen ermöglicht einen klareren Blick auf die Pulsare und bietet eine unabhängige und ergänzende Möglichkeit zum Nachweis von Gravitationswellen.


    Im Herzen der meisten Galaxien – das sind Ansammlungen von Hunderter Milliarden von Sternen wie unsere eigene Milchstraße - befindet sich ein supermassereiches Schwarzes Loch. Galaxien werden durch ihre heftige Gravitation zueinander hingezogen, und bei ihrer Verschmelzung sinken die zentralen schwarzen Löcher in das neue Zentrum. Wenn diese sich nun spiralförmig nach innen bewegen und selbst miteinander verschmelzen, erzeugen sie extrem langwellige Gravitationswellen mit Hunderten von Billionen von Kilometern oder mehreren Lichtjahren Abstand zwischen den Wellenkämmen. Das Universum ist voll von solchen verschmelzenden supermassereichen schwarzen Löchern, und sie füllen es mit einem Meer von niederfrequenten Raumzeitwellen.


    Astronom*innen suchen seit Jahrzehnten nach diesen Wellen, indem sie die Pulse von Pulsaren, den dichten Überresten massereicher Sterne, systematisch beobachten. Pulsare rotieren mit extremer Regelmäßigkeit, und die Astronom*innen wissen genau, wann jeder Puls zu erwarten ist. Das Meer der Gravitationswellen verändert jedoch auf subtile Weise den Zeitpunkt, an dem die Impulse die Erde erreichen, und die genaue Beobachtung vieler Pulsare am Himmel kann ihre Anwesenheit aufdecken.


    Bei der bisherigen Suche nach diesen Wellen wurden ausschließlich große Radioteleskope eingesetzt, die Radiowellen sammeln und analysieren. Nun hat ein internationales Team von Wissenschaftler*innen diese winzigen Schwankungen der Raumzeit in Daten der Gammastrahlung gesucht, die über mehr als zehn Jahre mit dem Fermi-Satelliten der NASA aufgenommen wurden. Ihre Analyse zeigt, dass der Nachweis dieser Wellen mit nur wenigen Jahren zusätzlicher Beobachtungen bereits möglich sein könnte.


    "Fermi untersucht das Universum mit Gammastrahlen, der energiereichsten Form des Lichts. Wir waren überrascht, wie gut es die Art von Pulsaren aufspürt, die wir für die Suche nach diesen Gravitationswellen benötigen - bisher haben wir mehr als 100 gefunden", so Matthew Kerr, Wissenschaftler am U.S. Naval Research Laboratory in Washington. "Das Fermi-Teleskop und die Gammastrahlen haben einige besondere Eigenschaften, die sie zusammen zu einem sehr mächtigen Werkzeug bei dieser Untersuchung machen.“


    Licht nimmt viele Formen an. Niederfrequente Radiowellen können einige Objekte durchdringen, während hochfrequente Gammastrahlen in energetische Teilchenschauer explodieren, wenn sie auf Materie treffen. Gravitationswellen decken ebenfalls ein breites Spektrum ab, wobei massereichere Objekte tendenziell längere Wellen erzeugen.


    Das Fermi „Large Area Telescope“ (LAT) auf dem Fermi-Satelliten befindet sich in einer Umlaufbahn 500 km über der Erde und sammelt Gammastrahlen von Millisekunden-Pulsaren. Auf ihrer Reise durch die Milchstraße treffen diese hochenergetischen Photonen auf ein Meer von niederfrequenten Gravitationswellen, die von Paaren supermassereicher schwarzer Löcher erzeugt werden, die in den Zentren miteinander verschmolzener Galaxien zusammenwachsen. Die Wellen der Raumzeit mit Wellenlängen von einigen Lichtjahren bewirken, dass jedes Photon etwas früher oder etwas später als erwartet eintrifft. Die Überwachung der Gammastrahlung von vielen dieser Millisekunden-Pulsare - ein Experiment, das als Pulsar-Timing-Array (PTA) bekannt ist - kann diese verräterische Signatur aufdecken. Für Pulsar-Timing-Arrays wurden bisher nur empfindliche Radioteleskope eingesetzt. Jetzt ermöglichen die Daten von Fermi ein auf Gammastrahlung basierendes Pulsar-Timing-Array, das einen neuen, klaren Blick auf diese Art von Gravitationswellen ermöglicht. Illustration: Daniëlle Futselaar/MPIfR (artsource.nl)


    Da es unmöglich ist, einen Detektor zu bauen, der groß genug ist, um wellen mit Billionen von Kilometern Wellenlänge aufzuspüren, die von miteinander verschmelzenden supermassereichen schwarzen Löchern erzeugt werden, verwenden die Astronom*innen in der Natur bereits vorhandene Detektoren in Form sogenannter Pulsar-Timing-Arrays. Dabei handelt es sich um Ansammlungen von Millisekunden-Pulsaren, die sowohl in Radiowellen als auch in Gammastrahlen leuchten und sich jede Sekunde Hunderte von Malen um ihre Achse drehen. Wie Leuchttürme scheinen diese Strahlen regelmäßig zu pulsieren, wenn sie über die Erde hinwegziehen, und wenn sie durch das Meer der Gravitationswellen hindurchgehen, wird ihnen das schwache Grollen entfernter, massereicher schwarzer Löcher aufgeprägt


    Ursprünglich wurden Pulsare mit Hilfe von Radioteleskopen entdeckt, und Pulsar-Timing-Array-Experimente mit Radioteleskopen sind seit fast zwei Jahrzehnten in Betrieb. Die großen Parabolspiegel sind am empfindlichsten für die Auswirkungen von Gravitationswellen, aber interstellare Effekte erschweren die Analyse der Radiodaten. Das Weltall ist größtenteils leer, aber beim Durchqueren der riesigen Entfernung zwischen einem Pulsar und der Erde treffen die Radiowellen immer noch auf viele Elektronen. Ähnlich wie ein Prisma das sichtbare Licht beugt, verbiegen die interstellaren Elektronen die Radiowellen und verändern so ihre Ankunftszeit. Die energiereichen Gammastrahlen werden auf diese Weise nicht beeinflusst, so dass sie eine ergänzende und unabhängige Methode des „Pulsar Timings“ darstellen.


    "Die Fermi-Ergebnisse sind bereits 30% so gut wie die Pulsar-Timing-Arrays im Radiobereich, wenn es darum geht, den Gravitationswellenhintergrund nachzuweisen", sagt Aditya Parthasarathy. "Wenn wir weitere fünf Jahre lang Pulsardaten sammeln und analysieren, wird das System genauso gut sein, mit dem zusätzlichen Vorteil, dass wir uns keine Sorgen um all die verirrten Elektronen machen müssen." Ein Pulsar-Timing-Array in Gammawellenlängen, das vor dem Start von Fermi nicht vorgesehen war, stellt eine leistungsstarke neue Ergänzung in der Gravitationswellen-Astrophysik dar.


    "Der Nachweis des Gravitationswellenhintergrunds mit Pulsaren ist in Reichweite, bleibt aber schwierig. Eine unabhängige Methode, wie sie hier unerwartet durch Fermi gezeigt wurde, ist eine großartige Neuigkeit, sowohl für die Bestätigung zukünftiger Ergebnisse als auch für die Demonstration von Synergien mit Radioexperimenten", schließt Michael Kramer, Direktor am MPIfR und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“.


    Weitere Infos auf den Seiten des MPIfR unter https://www.mpifr-bonn.mpg.de/pressemeldungen/2022/6?c=8727

    Anhand von Daten der VISTA-Durchmusterung des Magellanschen Wolkensystems (VMC) haben Forschende des Leibniz-Instituts für Astrophysik Potsdam (AIP) in Zusammenarbeit mit dem VMC-Team die Existenz von langgestreckten Bahnen bestätigt, die das Rückgrat des Balkenbildungsprozesses bilden. Die Methode verwendete wiederholte bildgebende Beobachtungen, um eine Geschwindigkeitskarte der Sterne in der zentralen Region der Großen Magellanschen Wolke zu erstellen.


    Die Große Magellansche Wolke ist von der südlichen Hemisphäre aus mit bloßem Auge sichtbar, da sie die hellste und massereichste Satellitengalaxie der Milchstraße ist. Die Große Magellansche Wolke ist reich an Sternen, die eine große Altersspanne abdecken, von neu entstehenden Sternen bis zu Sternen, die so alt sind wie das Universum. Sie wird als irreguläre Galaxie eingestuft, weil sie durch einen einzelnen Spiralarm und einen vom Zentrum der Scheibe abgesetzten Balken gekennzeichnet ist.


    „Stellare Balkenstrukturen sind ein häufiges Merkmal von Spiralgalaxien. Man nimmt an, dass sie durch kleine Störungen innerhalb der stellaren Scheibe entstehen, die die Sterne aus ihrer Kreisbewegung herauslenken und sie auf langgestreckte Bahnen zwingen“, erklärt Dr. Florian Niederhofer, Erstautor der jetzt veröffentlichten Studie. „Eine besondere Art dieser Bahnen sind jene, die mit der Hauptachse des Balkens ausgerichtet sind. Diese gelten als das ‚Rückgrat‘ der Sternbalken und bilden die Hauptstütze der Balkenstruktur.“ Das VISTA-Teleskop wurde entwickelt, um den südlichen Himmel im nahen Infrarot zu durchmustern und Quellen zu untersuchen, die aufgrund ihrer Beschaffenheit oder der Anwesenheit von Staub bevorzugt in diesem Spektralbereich emittieren. Anhand von VMC-Daten hat das Team nun erstmals diese Bahnen innerhalb des Balkens der Großen Magellansche Wolke nachgewiesen. VMC ist eine Multi-Epochen-Durchmusterung des Systems der Magellanschen Wolken und ein öffentliches Durchmusterungsprojekt der Europäischen Südsternwarte (ESO), das zwischen 2010 und 2018 durchgeführt wurde und darauf abzielt, den stellaren Inhalt und die Dynamik unserer nächsten extragalaktischen Nachbarn zu untersuchen.


    Das Team entwickelte eine ausgeklügelte Methode zur genauen Bestimmung der Eigenbewegungen von Sternpopulationen innerhalb der Magellanschen Wolken. In einer jetzt in Monthly Notices of the Royal Astronomical Society veröffentlichten Studie wendete es diese Methode auf zentrale Teile der Großen Magellansche Wolke an. Aus den gemessenen Werten berechneten die Autorinnen und Autoren die tatsächlichen Sternbewegungen innerhalb der Großen Magellansche Wolke und erstellten detaillierte Geschwindigkeitskarten der internen Geschwindigkeitsstruktur der Galaxie. „Die erstaunliche Detailgenauigkeit der Geschwindigkeitskarten zeigt, wie sehr sich unsere Methode im Vergleich zu früheren Messungen vor einigen Jahren verbessert hat“, sagt Thomas Schmidt, Mitautor und Doktorand am AIP. Zum Erstaunen der Forschenden enthüllten ihre Karten langgestreckte Sternbewegungen, die der Struktur und Ausrichtung des Balkens folgen.


    Die beobachteten Bahnen von Sternen im Zentrum der Großen Magellanschen Wolke. Die Sterne in der zentralen Region, entlang des Balkens, folgen länglichen Bahnen, die von einer Kreisform (gestrichelte Konturen) abweichen.
    Bild: AIP/F. Niederhofer, VISTA VMC Survey


    „Dank ihrer geringen Entfernung von etwa 163.000 Lichtjahren können wir mit bodengebundenen Teleskopen wie VISTA einzelne Sterne innerhalb der Magellanschen Wolken beobachten“, sagt Prof. Dr. Maria-Rosa Cioni, die Leiterin des VMC-Projekts und der Abteilung Zwerggalaxien und der galaktische Halo am AIP. „Damit bieten uns diese Galaxien ein einzigartiges Labor, in dem wir die Prozesse, die Galaxien formen und bilden, im Detail untersuchen können.“ Von großem Interesse ist die Dynamik der Sterne, da sie wertvolle Informationen über die Entstehung und Entwicklung der Galaxien liefern. Lange Zeit waren jedoch die eindimensionalen Geschwindigkeiten der Sterne entlang der Sichtlinie die einzige Quelle für dynamische Informationen. Diese Geschwindigkeiten können leicht durch spektroskopische Dopplerverschiebungen gemessen werden, die auf dem Effekt beruhen, dass das beobachtete Licht eines Sterns blauer oder röter erscheint, je nachdem, ob er sich uns nähert oder von uns wegbewegt. Um die vollständigen dreidimensionalen Geschwindigkeiten der Sterne zu erhalten, muss man die Eigenbewegungen der Sterne kennen, d. h. die scheinbaren zweidimensionalen Bewegungen der Sterne in der Himmelsebene. Diese Bewegungen können durch mehrfache Beobachtung derselben Sterne über einen bestimmten Zeitraum, in der Regel mehrere Jahre, ermittelt werden. Die Verschiebungen der Sterne werden dann in Bezug auf nahe gelegene Referenzobjekte bestimmt. Bei diesen Objekten kann es sich z. B. um sehr weit entfernte Hintergrundgalaxien handeln, von denen man aufgrund ihrer großen Entfernung annehmen kann, dass sie sich in Ruhe befinden, oder um Sterne mit bereits bekannten Eigenbewegungen.


    Da die beobachteten Bewegungen der Sterne von der Erde aus gesehen winzig sind, sind präzise Messungen immer noch eine Herausforderung. In der Entfernung der Magellanschen Wolken liegen die beobachteten Bewegungen der Sterne in der Größenordnung von Millibogensekunden pro Jahr – eine Millibogensekunde entspricht etwa der Größe einer Astronautin auf dem Mond, von der Erde aus gesehen. „Unsere Entdeckung ist ein wichtiger Beitrag zur Untersuchung der dynamischen Eigenschaften von Balkengalaxien, da die Magellanschen Wolken derzeit die einzigen Galaxien sind, in denen wir solche Bewegungen mit Hilfe der stellaren Eigenbewegungen untersuchen können. Für weiter entfernte Galaxien liegt dies noch jenseits unserer technischen Möglichkeiten“, sagt Florian Niederhofer. Insgesamt wurden 9 Jahre lang Beobachtungen durchgeführt, um genügend Bilder zu sammeln, um diese winzigen Bewegungen messen zu können. „Diese unerwartete Messung ergänzt eine ganze Reihe von bedeutenden Ergebnissen, die das VMC-Team erzielt hat“, fügt Maria-Rosa Cioni stolz hinzu.


    Weitere Infos auf den Seiten des AIP unter https://www.aip.de/de/news/ste…e-large-magellanic-cloud/

    Hallo Stefan,


    ja, die Elongation alleine wäre nicht das Problem. Aber wenn der Mond bei Sonnenaufgang in Kombination mit der Elongation gerade mal 4° über dem Horizont steht, wirds bei dem Smog hier echt haarig. Ich hatte aber tatsächlich den Wecker gestellt um auf Nummer Sicher zu gehen - und die angekündigten Schleierwolken waren tatsächlich da. Hab mich dann wieder hingelegt...


    Viele Grüße

    Caro

    Bekanntermaßen sieht es mit den Planeten derzeit ja eher dünn aus - was da ist, tummelt sich in der Morgendämmerung tief überm Osthorizont. Die letzten Tage über kam noch der Mond dazu. Durch die Wetterlage staut sich hier bei mir in der Rheinebene der Dunst. Vorgestern hab ich außer der Venus deshalb keinen der anderen Planeten zu Gesicht bekommen. Gestern morgen war es besser, aber am Mond konnte man das grausige Seeing sehen




    Heute morgen bin ich dann hauptsächlich wegen der tiefstehenden Mondsichel mal ganz früh auf den Heidelberger Königstuhl gefahren - was für ein Unterschied in der Durchsicht...



    Die Mondsichel selber sollte eine ganz besondere Reihe komplettieren, nämlich diese hier:



    Die Mondphasen 21 Nächte am Stück. Der März hat es echt gut gemeint wettertechnisch (und weniger gut mit meinem Nachtschlaf...). Die schmale Mondsichel morgen wird wohl nix. Es sollen Wolken kommen - und sie steht außerdem bei Sonnenaufgang selber gerade eben erst über dem Horizont...


    Viele Grüße

    Caro

    Von Heute Morgen, das Foto gibt gut den Anblick wieder.Saturn und Mars in der Dämmerung gerade eben so zu erkennen, Venus problemlos. Zu anderen Zeiten sind die Sichtbarkeiten deutlich günstiger und die Planeten hell am dunklen Nachthimmel. Nicht umsonst sind Markur, Venus, Mars, Jupiter und Saturn schon seit der Antike bekannt.



    Frage 2 ist leicht beantwortet. Nein. Und Pluto ist kein Planet, aber selbst wenn er einer wäre, würde er nicht. Schau du mal die Lage der Umlaufbahnen in 3D an - da gibt es keine Schnittpunkte


    Viele Grüße

    Caro

    Mit Hilfe eines einzigartigen neuen Datensatzes istMaosheng Xiang und Hans-Walter Rix (MPI für Astronomie) die bislang detaillierte Rekonstruktion der bewegten Teenager-Jahre unserer Heimatgalaxie gelungen: der Zeit zwischen etwa 13 und 8 Milliarden Jahren, als die Milchstraße ein reges Leben führte, mit anderen Galaxien verschmolz und viel Wasserstoff verbrauchte, um neue Sterne zu bilden – bevor für die folgenden 8 Milliarden Jahre ein ruhigeres Erwachsenenleben begann. Möglich wurde die Rekonstruktion, weil die Forscher das Alter zahlreicher Milchstraßen-Sterne präzise bestimmen konnten.


    Zu verstehen, wie unsere Heimatgalaxie entstanden ist und sich entwickelt hat, ist ein wichtiges Ziel der Astronomie und Astrophysik. Neue umfangreiche Beobachtungsdaten haben dabei in den letzten Jahren zu beeindruckenden Fortschritten geführt. Die neue Studie von Xiang und Rix ist ein nächster großer Schritt: Die beiden Forscher konnten eine Reihe früher Phasen der Milchstraßengeschichte erstmals genauer datieren. Möglich wurde das durch eine Auswertung, bei der es gelang, das Alter von 250.000 Sternen präzise zu bestimmen.


    Nach unserem heutigen Verständnis hat unsere Heimatgalaxie in ihrem bisherigen Leben mehrere Phasen durchlaufen. Während der "Baby-Phase" (kein offizieller Fachbegriff) verschmolzen kleine, gasreiche Vorläufergalaxien zu einem Vorläufer-Gebilde, das später zu unserer Milchstraße heranwuchs. Da die verschmelzenden Galaxien nicht frontal miteinander kollidierten, verliehen sie der neu entstehenden Struktur einen Drall (Drehimpuls), der zu einer Abflachung führte. So dürfte die so genannte dicke Scheibe unserer Milchstraße entstanden sein: Gas und Sterne in einer abgeflachten Scheibe mit einem Durchmesser von 100 000 Lichtjahren und einer Dicke von 6000 Lichtjahren.


    Eine Reihe weiterer Verschmelzungen mit Galaxien, die etwas kleiner waren als die Milchstraße, schufen den so genannten stellaren Halo, der die Milchstraßenscheibe umgibt – und jede weitere Verschmelzung brachte die regelmäßigen Abläufe in unserer Galaxis etwas durcheinander. Die späteren "Erwachsenenjahre" unserer Galaxis dagegen verliefen wesentlich ruhiger. Sterne entstanden (und entstehen) in jener Zeit vor allem in der so genannten dünnen Scheibe, die jünger und nur rund 2000 Lichtjahre dick ist.


    Das neue Ergebnis von Xiang und Rix beschreibt nun detaillierter als je zuvor die Geschichte der produktiven Jugendjahre der Milchstraße von vor etwa 13 bis 8 Milliarden Jahren. Entscheidend für diese Rekonstruktion war, dass es den Astronomen gelungen war, das Alter von etwa 250.000 einzelnen Sternen genau zu bestimmen. In der Astronomie ist das alles andere als eine leichte Aufgabe. Es gibt jedoch eine bestimmte Sorte von Sternen, die so genannten "Unterriesen", bei denen man das Alter direkt aus Oberflächentemperatur und Helligkeit eines Sterns erschließen kann. Der Nachteil ist, dass Unterriesen sehr selten sind. Nur wenige Prozent der Sterne in unserer Milchstraße befinden sich zu einem bestimmten Zeitpunkt in diesem vergleichsweise kurzen Entwicklungsstadium.


    Glücklicherweise liefern neuere, umfassende Himmelsdurchmusterungen qualitativ hochwertige Daten für eine beeindruckende Anzahl von Sternen – genug, um auch zahlreiche Exemplare der selteneren Sternsorten zu erfassen: Das Early Data Release 3 der ESA-Mission Gaia, das im Dezember 2020 veröffentlicht wurde, lieferte Positionsdaten und Entfernungen für fast 1,5 Milliarden Sterne, und die siebte Daten-Veröffentlichung der LAMOST-Durchmusterung, die im Jahr 2021 veröffentlicht wurde, bot mehr als 9 Millionen Sternspektren, die ihrerseits Informationen über die Temperatur und die chemische Zusammensetzung der Sterne enthalten. Indem sie die Informationen aus diesen beiden Datensätzen kombinierten konnten Xiang und Rix ihren umfangreichen Katalog von Sternen mit bekanntem Alter zusammenstellen.


    Aufbau unserer Heimatgalaxie. Die neuen Ergebnisse liefern eine Rekonstruktion der Geschichte unserer Milchstraße, und insbesondere der Entwicklung der sogenannten dicken Scheibe. Illustration: Stefan Payne-Wardenaar / MPIA


    Indem sie die Sterne nach Alter und chemischer Zusammensetzung sortierten erhielten die beiden Astronomen ein bemerkenswert klares Bild der Teenager-Zeit unserer Heimatgalaxie – inklusive Zeitangaben, wann die verschiedenen Phasen der Entwicklung stattgefunden hatten. Zunächst spielte die Musik dabei vor allem im stellaren Halo und in der dicke Scheibe, die sich aus einem anfänglichen Zustrom von Gas gebildet hatte. Xiang und Rix fanden dabei heraus, dass sich vor etwa 11 Milliarden Jahren in unserer Galaxie in kurzer Zeit außergewöhnlich viele neue Sterne bildeten. Das dürfte Folge eines ganz bestimmten Verschmelzungsereignisses sein: der Verschmelzung unserer eigenen Galaxie mit der kleineren Galaxie, die den etwas ungewöhnlichen Namen Gaia Enceladus/Sausage trägt. Die Überreste jener kleineren Galaxie wurden 2018 von zwei konkurrierenden Gruppen anhand von Gaia-Daten entdeckt und benannt wurden.


    In ihren Daten konnten Xiang und Rix erkennen, dass ein auffälliges "Produktionsmaximum" bei der Sternentstehung damit zusammenfiel, dass sich die Bahnen zahlreicher Sterne plötzlich und drastisch verändert hatten. Letzteres ist eine offensichtliche Folge der Verschmelzung, konkret: des Gravitationseinflusses der Gaia-Enceladus/Sausage-Galaxie. Damit dürfte das Sternentstehungs-Maximum in der Milchstraße nicht nur zeitgleich mit der Gaia-Enceladus/Sausage-Verschmelzung auftren, sondern eine Folge der Verschmelzung gewesen sein: Schockwellen aus der Kollision der Gasmassen der Gaia-Enceladus/Sausage-Galaxie mit dem Gas in unserer eigenen Galaxie könnten den Kollaps von Gaswolken und damit die vermehrte Sternbildung ausgelöst haben.


    Auch nachdem die turbulente Ära der Verschmelzungen beendet war, bildete die dicke Scheibe auf ungewöhnlich produktive Weise Sterne. Die Gesamtzahl der gebildeten Sterne lässt darauf schließen, dass die dicke Scheibe von Anfang an beeindruckende Mengen an Gas enthielt. Das würde auch ihre vergleichsweise große Dicke erklären. Mit einem so großen Vorrat an Gas waren die Bedingungen für die Sternentstehung sehr günstig – auch ohne dass sich jene Scheibe zu einem schmaleren Gebilde zusammenziehen musste, um die für die Sternentstehung nötigen Gasdichten zu erreichen.


    Vor allem massereiche Sterne produzieren viele Elemente, die schwerer sind als Wasserstoff und Helium. Solche Elemente heißen in der Astronomie (und abweichend von unserem Alltags-Sprachgebrauch sowie dem der Chemie) "Metalle". Die schwereren Elemente sammeln sich in der Regel in der Nähe der zentralen Regionen der Galaxie. Sterne, die in jenen Regionen neu entstehen, enthalten daher typischerweise mehr Metalle als Sterne, die in den Außenbezirken entstehen.


    Die von Xiang und Rix gesammelten Daten zeigen jedoch etwas anderes: Alle Sterne, die zur selben Zeit entstehen, haben denselben Metallgehalt. Das gilt vom frühestmöglichen Zeitpunkt an, der in den Daten sichtbar ist – 13 Milliarden Jahre vor unserer Zeit, also nur 800 Millionen Jahre nach dem Urknall – bis zu der Zeit vor rund 8 Milliarden Jahren, ab dem unsere Milchstraße in ihre gemäßigtere Erwachsenenphase eintritt. Der Metallgehalt selbst ändert sich dabei mit der Zeit: Je älter ein Stern ist, desto weniger Metalle enthält er.


    Die einfachste Erklärung für diesen Umstand ist, dass während dieser ganzen Zeit eine gründliche Durchmischung des Gases in der dicken Scheibe stattgefunden hat – und diese Erklärung ist ein Schlüsselergebnis der neuen Studie. Auf diese Weise hätten alle zur gleichen Zeit geborenen Sterne die gleiche chemische Zusammensetzung geerbt, wobei der Anteil schwerer Elemente mit der Zeit zunahm, da das Gas allmählich mehr und mehr mit den Produkten der Kernfusionsprozesse früherer Sterngenerationen verunreinigt – die Astronomen nennen es angereichert – wurde.


    Vor etwa 8 Milliarden Jahren, so zeigen die neuen Daten, gingen die produktiven Teenager-Jahre der Milchstraße zu Ende. Das dürfte daran gelegen haben, dass die dicke Scheibe einen Großteil ihres anfänglichen Vorrats an Wasserstoffgas aufgebraucht hatte. Offensichtlich gab es aber immer noch einen stetigen Zufluss mäßiger Mengen an frischem Wasserstoffgas aus dem intergalaktischen Raum, und da die Sternentstehungsaktivität in der dicken Scheibe so gut wie beendet war, konnte sich dieses Gas nach und nach in einer eigenen Scheibe ansiedeln. Da aber insgesamt nicht so viel Gas einströmte, musste sich diese Scheibe deutlich weiter zusammenziehen, auf eine Dicke von nur etwa 2000 Lichtjahren, um die richtigen Bedingungen für eine (mäßige) Sternentstehung zu erreichen.


    Das Ergebnis war das, was wir heute die dünne Scheibe unserer Galaxis nennen. Die lange, eher bedächtige Erwachsenphase unserer Heimatgalaxie hatte begonnen. Eine weitere Kollision samt Verschmelzung mit einer einigermaßen massereichen Galaxie hätte die Dinge vielleicht ein wenig beleben können, aber das geschah nicht – ein eher ungewöhnliches Schicksal, verglichen mit anderen Galaxien. Alles andere als ungewöhnlich ist der allgemeine Trend: Eine produktive Frühphase, gefolgt von einem ruhigen Leben, scheint nach aktuellen Computersimulationen die Norm für die Galaxienentwicklung zu sein.


    Das ist die neu rekonstruierte Version der Geschichte unserer Galaxie. Und was sich für eine Darstellung der menschlichen Geschichte wie eine Selbstverständlichkeit anhört – dass wichtige Ereignisse samt ihrer Daten genannt werden – ist für die Astronomie eher ungewöhnlich. Es ist sehr schwierig, verlässliche Daten für Ereignisse in der kosmischen Geschichte unserer Heimatgalaxie anzugeben. Dass dies in der neuen Studie gelungen ist und somit eine detaillierte Zeitleiste der Teenager-Jahre unserer Galaxie erstellt werden konnte, ist ein beachtlicher Fortschritt.


    Xiang und Rix planen derweil schon die nächsten Schritte. In nur einigen Jahren sollte es noch deutlich bessere und umfassendere Datensätze geben. Um das Jahr 2024 ist die vierte Daten-Veröffentlichung (Data Release 4, DR4) der Gaia-Mission der ESA zu erwarten. Die präziseren Entfernungsmessungen (ermittelt über die Parallaxe) dieser Veröffentlichung sollten genaue Altersschätzungen für eine noch deutlich größere Anzahl von Sternen und über wesentlich größere Entfernungen hinweg ermöglichen.


    Detaillierte spektroskopische Durchmusterungen decken den Nordhimmel derzeit ebenfalls nur bis zu vergleichsweise geringen Entfernungen ab. Das sollte sich dank Durchmusterungen wie SDSS-V und 4MOST ändern. Insgesamt stehen die Chancen gut, dass die hier beschriebene Pionierarbeit der Beginn eines neuen Kapitels der galaktischen Archäologie sein könnte, das auf großen Stichproben mit präzisen Sternaltern beruht.


    Weitere Infos auf den Seiten des MPIA unter http://www.mpia.de/5843174/new…tion_18426992_transferred