Suche nach langwelligen Gravitationswellensignalen mit dem Fermi-Satelliten

  • Miteinander verschmelzende supermassereiche schwarze Löcher in den Zentren wechselwirkender Galaxien füllen das Universum mit extrem niederfrequenten Gravitationswellen. Astronom*innen haben bereits mit großen Radioteleskopen nach diesen Wellen gesucht, um die subtilen Auswirkungen dieser Raumzeitwellen auf die von Pulsaren in unserer Galaxie ausgesandten Radiowellen zu beobachten. Ein internationales Team von Wissenschaftlern hat nun gezeigt, dass auch hochfrequente Gammastrahlung, aufgenommen mit dem Fermi-Teleskop der NASA, für diese Suche genutzt werden kann. Die Verwendung von Gammastrahlen anstelle von Radiowellen ermöglicht einen klareren Blick auf die Pulsare und bietet eine unabhängige und ergänzende Möglichkeit zum Nachweis von Gravitationswellen.


    Im Herzen der meisten Galaxien – das sind Ansammlungen von Hunderter Milliarden von Sternen wie unsere eigene Milchstraße - befindet sich ein supermassereiches Schwarzes Loch. Galaxien werden durch ihre heftige Gravitation zueinander hingezogen, und bei ihrer Verschmelzung sinken die zentralen schwarzen Löcher in das neue Zentrum. Wenn diese sich nun spiralförmig nach innen bewegen und selbst miteinander verschmelzen, erzeugen sie extrem langwellige Gravitationswellen mit Hunderten von Billionen von Kilometern oder mehreren Lichtjahren Abstand zwischen den Wellenkämmen. Das Universum ist voll von solchen verschmelzenden supermassereichen schwarzen Löchern, und sie füllen es mit einem Meer von niederfrequenten Raumzeitwellen.


    Astronom*innen suchen seit Jahrzehnten nach diesen Wellen, indem sie die Pulse von Pulsaren, den dichten Überresten massereicher Sterne, systematisch beobachten. Pulsare rotieren mit extremer Regelmäßigkeit, und die Astronom*innen wissen genau, wann jeder Puls zu erwarten ist. Das Meer der Gravitationswellen verändert jedoch auf subtile Weise den Zeitpunkt, an dem die Impulse die Erde erreichen, und die genaue Beobachtung vieler Pulsare am Himmel kann ihre Anwesenheit aufdecken.


    Bei der bisherigen Suche nach diesen Wellen wurden ausschließlich große Radioteleskope eingesetzt, die Radiowellen sammeln und analysieren. Nun hat ein internationales Team von Wissenschaftler*innen diese winzigen Schwankungen der Raumzeit in Daten der Gammastrahlung gesucht, die über mehr als zehn Jahre mit dem Fermi-Satelliten der NASA aufgenommen wurden. Ihre Analyse zeigt, dass der Nachweis dieser Wellen mit nur wenigen Jahren zusätzlicher Beobachtungen bereits möglich sein könnte.


    "Fermi untersucht das Universum mit Gammastrahlen, der energiereichsten Form des Lichts. Wir waren überrascht, wie gut es die Art von Pulsaren aufspürt, die wir für die Suche nach diesen Gravitationswellen benötigen - bisher haben wir mehr als 100 gefunden", so Matthew Kerr, Wissenschaftler am U.S. Naval Research Laboratory in Washington. "Das Fermi-Teleskop und die Gammastrahlen haben einige besondere Eigenschaften, die sie zusammen zu einem sehr mächtigen Werkzeug bei dieser Untersuchung machen.“


    Licht nimmt viele Formen an. Niederfrequente Radiowellen können einige Objekte durchdringen, während hochfrequente Gammastrahlen in energetische Teilchenschauer explodieren, wenn sie auf Materie treffen. Gravitationswellen decken ebenfalls ein breites Spektrum ab, wobei massereichere Objekte tendenziell längere Wellen erzeugen.


    Das Fermi „Large Area Telescope“ (LAT) auf dem Fermi-Satelliten befindet sich in einer Umlaufbahn 500 km über der Erde und sammelt Gammastrahlen von Millisekunden-Pulsaren. Auf ihrer Reise durch die Milchstraße treffen diese hochenergetischen Photonen auf ein Meer von niederfrequenten Gravitationswellen, die von Paaren supermassereicher schwarzer Löcher erzeugt werden, die in den Zentren miteinander verschmolzener Galaxien zusammenwachsen. Die Wellen der Raumzeit mit Wellenlängen von einigen Lichtjahren bewirken, dass jedes Photon etwas früher oder etwas später als erwartet eintrifft. Die Überwachung der Gammastrahlung von vielen dieser Millisekunden-Pulsare - ein Experiment, das als Pulsar-Timing-Array (PTA) bekannt ist - kann diese verräterische Signatur aufdecken. Für Pulsar-Timing-Arrays wurden bisher nur empfindliche Radioteleskope eingesetzt. Jetzt ermöglichen die Daten von Fermi ein auf Gammastrahlung basierendes Pulsar-Timing-Array, das einen neuen, klaren Blick auf diese Art von Gravitationswellen ermöglicht. Illustration: Daniëlle Futselaar/MPIfR (artsource.nl)


    Da es unmöglich ist, einen Detektor zu bauen, der groß genug ist, um wellen mit Billionen von Kilometern Wellenlänge aufzuspüren, die von miteinander verschmelzenden supermassereichen schwarzen Löchern erzeugt werden, verwenden die Astronom*innen in der Natur bereits vorhandene Detektoren in Form sogenannter Pulsar-Timing-Arrays. Dabei handelt es sich um Ansammlungen von Millisekunden-Pulsaren, die sowohl in Radiowellen als auch in Gammastrahlen leuchten und sich jede Sekunde Hunderte von Malen um ihre Achse drehen. Wie Leuchttürme scheinen diese Strahlen regelmäßig zu pulsieren, wenn sie über die Erde hinwegziehen, und wenn sie durch das Meer der Gravitationswellen hindurchgehen, wird ihnen das schwache Grollen entfernter, massereicher schwarzer Löcher aufgeprägt


    Ursprünglich wurden Pulsare mit Hilfe von Radioteleskopen entdeckt, und Pulsar-Timing-Array-Experimente mit Radioteleskopen sind seit fast zwei Jahrzehnten in Betrieb. Die großen Parabolspiegel sind am empfindlichsten für die Auswirkungen von Gravitationswellen, aber interstellare Effekte erschweren die Analyse der Radiodaten. Das Weltall ist größtenteils leer, aber beim Durchqueren der riesigen Entfernung zwischen einem Pulsar und der Erde treffen die Radiowellen immer noch auf viele Elektronen. Ähnlich wie ein Prisma das sichtbare Licht beugt, verbiegen die interstellaren Elektronen die Radiowellen und verändern so ihre Ankunftszeit. Die energiereichen Gammastrahlen werden auf diese Weise nicht beeinflusst, so dass sie eine ergänzende und unabhängige Methode des „Pulsar Timings“ darstellen.


    "Die Fermi-Ergebnisse sind bereits 30% so gut wie die Pulsar-Timing-Arrays im Radiobereich, wenn es darum geht, den Gravitationswellenhintergrund nachzuweisen", sagt Aditya Parthasarathy. "Wenn wir weitere fünf Jahre lang Pulsardaten sammeln und analysieren, wird das System genauso gut sein, mit dem zusätzlichen Vorteil, dass wir uns keine Sorgen um all die verirrten Elektronen machen müssen." Ein Pulsar-Timing-Array in Gammawellenlängen, das vor dem Start von Fermi nicht vorgesehen war, stellt eine leistungsstarke neue Ergänzung in der Gravitationswellen-Astrophysik dar.


    "Der Nachweis des Gravitationswellenhintergrunds mit Pulsaren ist in Reichweite, bleibt aber schwierig. Eine unabhängige Methode, wie sie hier unerwartet durch Fermi gezeigt wurde, ist eine großartige Neuigkeit, sowohl für die Bestätigung zukünftiger Ergebnisse als auch für die Demonstration von Synergien mit Radioexperimenten", schließt Michael Kramer, Direktor am MPIfR und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“.


    Weitere Infos auf den Seiten des MPIfR unter https://www.mpifr-bonn.mpg.de/pressemeldungen/2022/6?c=8727

  • Hallo Caro


    Das ist ein interessantes Vorgehen,

    Rodiowellen werden ja teils auch reflektiert, die Pulsare zu beobachten macht fokusiertere Beobachtung möglich. Über mehrere Pulsare müsste man die Ausbreitung der Welle zuordnen können, bei der Vielzahl Wellengang schön schwer zuzuordnen.

    Es ist wohl in beiden Fällen eine Art Frequenz Modulation und diese langen Wellen in der hohen Frequenz der Pulsare zu erfassen sicher technisch sehr anspruchsvoll. Den Herkuftsort einer Welle darüber zu bestimmen kann ich mir im Moment nicht vorstellen, ist das schon gelungen?


    Gruß Frank

  • 03sec Ralf, Du bist schuld, dass ich jetzt immer "langweilig" statt "langwellig" in der Überschrift lese ^^

    Caro Das Vorgehen finde ich auch sehr interessant. Das Problem kennt man ja in einigen Bereichen, die zum Teil auch artverwandt sind. Im Amateurfunk oder SDR kennt man dies u.a. auch, weil man im Grundrauschen Signale gut verbergen kann und versucht hier auch diese wieder herauszufiltern. In der Meteorologie sucht man auch im Verlauf des Luftdrucks nach Wetterphänomenen wie Schwerewellen.
    Spontan fallen mir auch noch die Schumann-Resonanz und Erd- bzw. Planetenbrummen ein, um wieder die Kurve zur Astronomie zu bekommen ;)


    Ich fände es spannend, wenn sich hieraus eine interessante Anwendung für SDR-Empfänger ergeben würden, damit mein Equipment eine sinnvolle Anwendung bekäme.


    CS & VG

    Stefan

    :star: Deep Sky: Sky-Watcher QUATTRO 150P | TS PHOTOLINE 106/700 f6.6 | ASKAR FRA300 Pro 60mm f/5 | Samyang 135mm F2.0 ED UMC :ringed_planet: Mond, Planeten (,Sonne): Sky-Watcher Skymax Mak-Cas 150/1800 | Sky-Watcher Skymax Mak-Cas 102/1300 :sun_with_face: Sonne: Lunt LS60MT Ha B1200 :camera: Kameras: ZWO ASI533MC Pro, ZWO ASI178MM, ZWO ASI178MC, ZWO ASI585MC, QHY 5III 715C :magnet: Autoguiding: Svbony SV106 | QHY 5III 178c :telescope: Montierung: iOptron CEM26 :high_voltage: Powerbank: FOX HALO 96K Power Pack :globe_showing_Europe_Africa: Webseite: https://www.junger.net/

Jetzt mitmachen!

Sie haben noch kein Benutzerkonto auf unserer Seite? Registrieren Sie sich kostenlos und nehmen Sie an unserer Community teil!