Komplexe Gasbewegung im Zentrum der Milchstraße

  • <b>Wie bewegt sich das Gas im Zentrum der Milchstraße? Mit einer umfassenden Computersimulation ist es Wissenschaftlern der Universität Heidelberg in Zusammenarbeit mit Kollegen der University of Oxford gelungen, die Bewegung der Gaswolken nachzuvollziehen. Das neue Modell macht es nunmehr möglich, die komplexe Gasbewegung schlüssig zu beschreiben. Durchgeführt wurden die Arbeiten von den Astrophysikern Dr. Mattia C. Sormani (Heidelberg) und Matthew Ridley (Oxford), auf Heidelberger Seite am Sonderforschungsbereich „Das Milchstraßensystem“ (SFB 881).</b>


    Unser Sonnensystem befindet sich in der Randzone einer scheibenförmigen Galaxie mit einem Durchmesser von rund 100.000 Lichtjahren, der Milchstraße. Von der Erde aus lässt sich ihr Aussehen daher nur indirekt beobachten, indem Positionen und Bewegungen von Sternen und Gaswolken gemessen werden. Sehr wahrscheinlich ähnelt die Milchstraße einer sogenannten Balkenspiralgalaxie, einem sehr häufig beobachteten Typ von Galaxie im Universum. Ein bekanntes Beispiel dafür ist die Galaxie M61.


    Neben den sichtbaren Sternen befinden sich in der Milchstraße große Mengen interstellaren Gases, dessen Verteilung und Bewegung äußerst komplex ist. Vor allem im Zentrum findet sich ein Missverhältnis zwischen der Menge des vorhandenen Gases und einer geringen Aktivität der Sternentstehung. „Mit unserer Simulation können wir nicht nur diese Diskrepanzen vorhergehender Modelle aufheben, sondern auch die tatsächlich beobachtete Bewegung des Gases erstaunlich gut wiedergeben“, so Prof. Dr. Ralf S. Klessen, der am Institut für Theoretische Astrophysik am Zentrum für Astronomie der Universität Heidelberg (ZAH) forscht.



    Die Abbildung zeigt das Ergebnis der Simulation des Gasflusses im Zentrum der Galaxie. Die Spiralstruktur mit den beiden Spiralarmen lässt sich gut erkennen. Bild: Matthew Ridley


    In dem neuen Modell bewegen sich die Gaswolken in der Zentralen Molekularen Zone (CMZ) – die innersten 1.500 Lichtjahre der Milchstraße – auf einer ellipsenförmigen Scheibe, die zwei Spiralarme hat. Das Gas aus der Umgebung strömt durch diese beiden Arme in die CMZ. Kollisionen der Gaswolken erzeugen dabei Druckwellen, die Turbulenzen auslösen. „Diese Turbulenzen könnten die Entstehung neuer Sterne verhindern, indem sie das Kollabieren der Gaswolken unterbrechen. Dies würde eine konsistente Erklärung für die bislang unerklärbar geringe Sternentstehungsrate in dieser Region liefern“, sagt Dr. Sormani.


    Durch ihre Computersimulation konnten die Wissenschaftler ein räumliches Bild vom Zentrum der Galaxis erstellen und die Position einiger bekannter Gaswolken erstmals innerhalb dieser dreidimensionalen „Karte“ bestimmen. Die Astrophysiker planen nun, ihre Simulation weiter zu optimieren, um ihre Ergebnisse noch besser an die Beobachtungen anzupassen. Sie wollen außerdem weitere Unklarheiten wie die ausgeprägte Asymmetrie der Gasverteilung in der zentralen Region der Milchstraße klären. Weiterführende Simulationen, die die zeitliche Entwicklung der chemischen Zusammensetzung des Gases verfolgen, sollen diesem Geheimnis auf den Grund gehen.


    „Wir gehen davon aus, dass diese Erkenntnisse einen wesentlichen Einfluss auf künftige Untersuchungen zum Aufbau unserer Galaxis haben werden“, betont Prof. Klessen.


    Weitere Infos und Bilder auf den Seiten der Uni Heidelberg unter http://www.uni-heidelberg.de/p…0170713_milchstrasse.html

Jetzt mitmachen!

Sie haben noch kein Benutzerkonto auf unserer Seite? Registrieren Sie sich kostenlos und nehmen Sie an unserer Community teil!