Die chemische Zusammensetzung von Weltraumstaub

  • <b>Der Staubdetektor auf der Raumsonde „Cassini“ – der Cosmic Dust Analyser (CDA) – hat mehrere extrem kleine und sehr seltene Partikel interstellaren Staubs aus dem Raum außerhalb unseres Sonnensystems identifiziert und deren chemische Zusammensetzung gemessen. Dabei hat sich überraschend gezeigt, dass die unterschiedlichen Staubteilchen sehr ähnlich zusammengesetzt sind und den gesamten Elementmix des Kosmos in sich versammeln. Die Experten vermuten daher, dass der Staub in der „Hexenküche“ des Weltraums fortlaufend zerstört, neugebildet und damit in seiner Zusammensetzung angeglichen wird. </b>


    „Interstellarer Staub, dessen einzelne Teilchen nur etwa 200 Nanometer groß und sehr schwer zu finden sind, ist gewissermaßen eine der letzten Bastionen des Unbekannten im Weltraum“, erklärt der Heidelberger Geowissenschaftler Prof. Dr. Mario Trieloff. Der Staub ist dabei Teil der interstellaren Materie, die neben schweren Elementen im Wesentlichen aus Wasserstoffgas und Helium besteht und aus der durch Verdichtungsprozesse Sterne und Planeten entstehen können. Diese Teilchen bildeten auch das Rohmaterial für die schweren Elemente, die das Haupt-Baumaterial der Erde und anderer terrestrischer Planeten waren.


    Für Untersuchungen des interstellaren Staubs ist die Wissenschaft bisher darauf angewiesen, dass Teilchen davon in unser Sonnensystem gelangen. Die Raumsonde „Stardust“ konnte bereits Partikel des sehr schwachen Stroms einfangen, der durch unser Sonnensystem zieht. „Diese Teilchen waren allerdings ungewöhnlich groß. Daher sind die Untersuchungsergebnisse daraus möglicherweise nicht repräsentativ“, erläutert Prof. Trieloff. Dagegen konnte die „Cassini“-Raumsonde unter Millionen planetarer Staubpartikel 36 Partikel interstellaren Staubs identifizieren. Zudem ist der CDA in der Lage, diese mit Hilfe von Massenspektrometrie direkt vor Ort zu untersuchen, was deutlich präzisere Ergebnisse als bisher ermöglicht.


    Nach Angaben von Dr. Frank Postberg, Heisenberg-Stipendiat am Institut für Geowissenschaften, konnten mit dem CDA zum ersten Mal massenspektrometrische Messungen an „einer statistisch bedeutsamen Menge solcher Staubpartikel“ durchgeführt werden. Dies war nur möglich, nachdem in Heidelberg mit Hilfe aufwendiger Versuchsreihen Labormodelle des Staubdetektors kalibriert wurden. Dazu musste sogenannter Silikatstaub im Labor auf bis zu 40 Kilometer pro Sekunde beschleunigt werden, was in etwa der Geschwindigkeit interstellaren Staubs entspricht.



    Der Staubdetektor auf der internationalen Cassini Raumsonde hat die schwache Signatur aufgespürt, die von Staub außerhalb unseres Sonnensystems stammt, von der lokalen interstellaren Wolke: eine fast leere Blase von kosmischem Gas und Staub, durch die wir mit unserem Sonnensystem reisen. Die Graphik zeigt die Position von Saturn und unserem Sonnensystem innerhalb der lokalen interstellaren Wolke und unserer Milchstraße. Grafik: ESA


    „Das Ergebnis der Messungen war sehr überraschend“, sagt Dr. Postberg. „Die 36 Partikel interstellaren Ursprungs, die in ihrer Zusammensetzung sehr ähnlich sind, enthalten eine Mischung der wichtigen gesteinsbildenden Elemente Magnesium, Eisen, Silicium und Calcium in durchschnittlichen kosmischen Häufigkeiten. Obwohl ein Staubteilchen weniger als ein Billionstel Gramm Masse besitzt, ist darin mit Ausnahme sehr flüchtiger Gase der gesamte Elementmix des Kosmos versammelt. Solche Teilchen lassen sich in unserem Sonnensystem nicht finden.“ Die meisten Wissenschaftler hätten verschieden zusammengesetzte Staubpopulationen erwartet, die den verschiedenen Entstehungsprozessen in Atmosphären sterbender Sterne entsprechen. Sie finden sich auch im Sternenstaub in Meteoriten, der in seiner Isotopenzusammensetzung höchst individuell ist. „Unsere Daten erzählen aber eine völlig andere Geschichte“, betont Dr. Postberg.


    Nach Einschätzung der Wissenschaftler hat der Staub seine Individualität verloren, weil er in der „Hexenküche“ des Weltraums homogenisiert wurde. Dort befinden sich riesige, Millionen Grad heiße Blasen von Supernovaexplosionen. Deren Ränder bestehen aus Schockfronten, die mit hunderten Kilometern pro Sekunde expandieren, wie der Erstautor und ESA-Wissenschaftler Dr. Nicolas Altobelli erläutert. Nach seinen Worten haben theoretische Überlegungen bereits nahegelegt, dass interstellarer Staub diese energiereiche Umgebung nur ein paar hundert Millionen Jahre überleben kann und es nur einigen „Lucky Survivors“ gelingt, als intakter Sternenstaub in sich neu bildende Planetensysteme zu gelangen. Die aktuellen Untersuchungsergebnisse bestätigten nun, dass die meisten Partikel zerstört und in kühlen und dichten Regionen des Weltalls – den Molekülwolken – wieder neu gebildet werden. Von dort aus bringen interstellare Winde diese Teilchen als homogenisierten Staub in unser Sonnensystem.


    Weitere Infos auf den Seiten der Uni Heidelberg unter https://www.uni-heidelberg.de/…ng-von-weltraumstaub.html

Jetzt mitmachen!

Sie haben noch kein Benutzerkonto auf unserer Seite? Registrieren Sie sich kostenlos und nehmen Sie an unserer Community teil!