Eismuster auf Churylassen tief blicken

  • Kometen sind imposante Erscheinungen am Nachthimmel. Auf ihrer Bahn ins Innere des Sonnensystems erwärmen sich ihre eisigen Kerne und setzen Gas und Staub frei. Die ausströmenden Gase, allen voran Wasserdampf, die auch die Staubpartikel mitreißen können, bilden eine Koma und einen Kometenschweif. Die Raumsonde Rosetta konnte bereits im September 2014 die frühe Aktivität des Kometen 67P/Churyumov-Gerasimenko untersuchen. Lokale Gas- und Staub-Fontänen wurden damals von täglich wiederkehrenden Wassereismustern am "Nacken" des Kometen begleitet. Das zeigen jetzt ausgewertete Beobachtungen des Instruments VIRTIS (Visible and Infrared Thermal Imaging Spectrometer).


    "Wie und wo genau die Quellen der kometaren Aktivität entstehen, war bisher ein weitgehend ungelöstes Rätsel der Kometenforschung", sagt Dr. Gabriele Arnold vom Deutschen Zentrum für Luft- und Raumfahrt (DLR), die die deutschen wissenschaftlichen Beiträge zum Instrument VIRTIS leitet. Mit der Entdeckung der Eismuster ließ sich nun nachweisen, dass zu bestimmten Tageszeiten Wasserdampf aus dem Kometeninneren an die Oberfläche strömt, anschließend im Schatten gefriert und bei Sonnenlicht erneut verdampft, um endgültig in den Weltraum zu entweichen.



    Zyklus von Verdampfen und Gefrieren: Die Quellen und Mechanismen der Aktivität von Kometen waren bisher nicht genau bekannt. Messungen mit dem Spektrometer VIRTIS an Bord von Rosetta konnten nun zeigen, dass zu bestimmten Tageszeiten Wasserdampf aus dem Kometeninneren an die Oberfläche strömt, anschließend im Schatten oder der Kälte der darauffolgenden Nacht wieder direkt an der Oberfläche gefriert und am nächsten Tag erneut verdampft, um schließlich ins Weltall zu entweichen. Grafik: ESA/Rosetta/VIRTIS/INAF-IAPS/OBS DE PARIS-LESIA/DLR; M.C. De Sanctis et al (2015).


    "Wir sehen bei Churyumov-Gerasimenko ein außergewöhnlich dunkles Objekt, dessen Oberfläche weitgehend eisfrei ist", erläutert Dr. Gabriele Arnold. "Trotzdem ist der Komet voller Aktivität, die Wasser und andere flüchtige Bestandteile aus dem reichhaltigen inneren Reservoir nach außen frei setzt", so die Wissenschaftlerin vom DLR-Institut für Planetenforschung in Berlin. Schnell wurden die Forscher auf die Eismuster aufmerksam, die dem Tag-Nacht-Rhythmus folgen. Sobald ein Wasserdampf speiender Ort auf der Oberfläche im Laufe der Kometenrotation abgeschattet war, bildete sich das Eis. Daraus schlussfolgerten die Wissenschaftler, dass Wasserdampf in den eisreichen Untergrundschichten entstehen muss, wo die Temperaturen nach dem unmittelbaren Sonnenuntergang noch höher sind, als an der Oberfläche. Von dort bahnt sich der Wasserdampf durch das ausreichend poröse Kometenmaterial seinen Weg zur Oberfläche und kondensiert. Die Wasserdampfkondensation aus der umgebenden Gashülle, genannt Koma, reicht nicht aus, um das Eis an der Oberfläche zu erklären. Dieser Prozess wird erst in größerer Nähe zur Sonne effektiv. "Die Untersuchungen von VIRTIS entschlüsseln somit erstmals einen der möglichen Mechanismen, der die lokale Aktivität des Kometen antreibt", unterstreicht Arnold.


    Auch die Kometen 9P/Tempel 1 und 103P/Hartley 2 zeigten lokale Wassereiserscheinungen, die sich mit einem ähnlichen Tag-Nacht-Zyklus erklären lassen. Die Wissenschaftler gehen deshalb davon aus, dass es sich bei ihrer Entdeckung, um einen Prozess handelt, der auch auf anderen Kometen anzutreffen ist.


    Weitere Infos und Bilder auf den Seiten des DLR unter http://www.dlr.de/dlr/presse/d…ead-15162/#/gallery/20766

Jetzt mitmachen!

Sie haben noch kein Benutzerkonto auf unserer Seite? Registrieren Sie sich kostenlos und nehmen Sie an unserer Community teil!